It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.(Extended Data Fig. 5). These results show the value of large sample sizes in blood to detect trans-mQTLs regardless of the tissue. Trans-mQTL SNPs and DNAm exhibit patterned TF binding.Recent studies have uncovered multiple types of transcription factor (TF)-DNA interactions influenced by DNAm, including the binding of DNAm-sensitive TFs [26][27][28] and cooperativity between TFs 27,29 . To gain insights into how SNPs induce long-range DNAm changes, we mapped enrichments for DNAm sites and SNPs across binding sites for 171 TFs in 27 cell types 30,31 . We found strong enrichments for most TFs and cell types among DNAm sites with a trans association (cis + trans: 55%; trans only: 80%; cis only: 18%) and among cis-acting SNPs (cis only: 96%, cis + trans: 91%, trans only: 1%; Fig. 2b, Supplementary Tables 7 and 8, and Supplementary Figs. 22 and 23). Consistent with the observation that trans-only DNAm sites are enriched for CpG islands (Supplementary Fig. 13), DNAm sites that overlap TF-binding sites (TFBSs) were relatively hypomethylated (weighted mean DNAm levels = 21% versus 52%, P < 2.2 × 10 −16 ; Supplementary Fig. 24).Next, we hypothesized that, if a trans-mQTL is driven by TF activity 8,10 , then particular TF-TF pairs may exhibit preferential enrichment 32 . An mQTL has a pair of TFBS annotations 31 , one for the SNP and one for the DNAm site. We evaluated whether the annotation pairs among 18,584 interchromosomal trans-mQTLs were associated with TF binding in a nonrandom pattern (Supplementary Note and Extended Data Fig. 6a,b). We found that 6.1% (22,962 of 378,225) of possible pairwise combinations of SNP-DNAm site annotations were more over-or underrepresented than expected by chance after strict multiple testing correction (Supplementary Note, Supplementary Table 9 and Extended Data Fig. 6c).After accounting for abundance and other characteristics, the strongest pairwise enrichments involved sites close to TFBSs for proteins in the cohesin complex, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.