Approximately half of the sedimentation flux of particulate phosphorus in the Laurentian Trough in the Gulf of St. Lawrence is mobilized within the sediment and returned to the water column. In the oxidizing surface sediment, a major portion of the sedimentation flux of organic phosphorus is mineralized, and the released phosphate is partitioned between the pore water and surface adsorption sites. Surface-adsorbed phosphate is released to the pore water as needed to replace dissolved phosphate that escapes to the overlying water. Most of the phosphate is released deeper in the sediment column from iron oxides undergoing reduction. The nonmobilized phosphorus, which is buried with the accumulating sediment, appears to consist mostly of stable minerals such as apatite.The concentration of dissolved phosphate in sediment pore waters increases sharp!y across the sediment-water interface from 2 pmol PO, liter-l in the bottom water to 6+3 pmol PO, liter-' in the top centimeter, remains almost constant at this value down to 5-l 5-cm depth, and then increases rapidly with further depth. In the region of constant concentration, phosphate is buffered by adsorption-desorption equilibria with the sediment. The production rate of phosphate, the buffering capacity of the sediment, and the thickness of the diffusive boundary layer at the sediment-water interface control the shape of the pore-water profile.In the aquatic environment, dissolved phosphate is consumed during the growth of phytoplankton and is regenerated during bacterial decomposition of organic matter. Much of the regeneration takes place in the water, but in relatively shallow environAcknowledgments
320sediment cores collected at three soft bottom stations; two brackish-marine and one freshwater. One of the marine stations was reduced and azoic, whereas the freshwater and the other marine station had well oxygenated conditions in the bottom waters. Positive redox-turnovers, including anaerobic incubation followed by reaeration, were generated in the cores and the supernatant water.In cores from the oxygenated freshwater and marine stations, dissolved phosphate and ferrous ions were released from the sediment during the anaerobic incubation. At the positive redox-turnover, the concentration of dissolved phosphate in the supernatant water decreased sharply due to scavenging by rapidly formed colloidal ferric hydroxide. Dissolved phosphate was also released during the incubation of the marine sediment from the reduced station. However, in these cores the concentration of iron in the supernatant water was low throughout the experiment and after the redox-turnover phosphate remained dissolved. In a parallel experiment in which iron was added to the supernatant water, dissolved phosphate was scavenged by ferric hydroxide at the positive redox-turnover in a similar way as observed for the two oxygenated stations. The low abundance of dissolved iron in the reduced marine system could be due to a rich supply of sulphide.In freshwater systems the concentration of dissolved phosphate is effectively diminished after a positive redox-turnover due to interaction with iron. In marine systems, which have had prevailed reduced conditions in the bottom waters, iron is immobilised. Consequently, a potent retention mechanism for phosphorus is eliminated. Our results imply that the cycling of phosphorus, in this aspect, differs in fresh and saltwater systems. This difference might have large effects on the availability of phosphorus as a nutrient.Manganese showed a consistent redox-dependent behaviour in all systems, but it did not interact with iron or phosphorus.The concentration of dissolved phosphate in sediment box-cores from the Laurentian Trough in the Gulf of St. Lawrence increased sharply across the sediment-water interface from 2.0 #mol/PO 4 /1 in the bottom water to 6 + 3 tmol PO 4 /1 in the top cm, remained almost constant at this value down to 5-15 cm depth, and then increased rapidly with further depth. In the region of constant concentration, phosphate is buffered by sorption equilibria with the sediment. The production rate of phosphate, the sorption capacity of the sediment, and the thickness of the diffusive boundary layer at the sediment-water interface appear to control the shape of the pore water profile. Even though the buffering places an upper limit on the concentration gradient across the sediment-water interface, and hence on the flux, the phosphate flux to the overlying water is controlled by the production rate of phosphate within the sediment. A model is proposed to relate sediment chemistry to phosphorus fluxes.Approximately half of the net sedimentation flux of phosphorus is not buried but is mobil...
Nitrogen is a limiting nutrient for primary production in the western Arctic Ocean. Measurements of the nitrogen (15N/14N) and oxygen (18O/16O) isotope ratios of nitrate in the southeastern Beaufort Sea provide insight into biogeochemical cycling of nitrogen in the western Arctic Ocean. Nitrate O isotope ratios in the Pacific halocline evidence a highly regenerated reservoir. Coincident peaks in nutrient concentrations and reduced dissolved oxygen concentrations suggest that nitrate accrues from organic matter remineralization in bottom waters of the Chukchi shelf and that these ventilate the basin predominantly in summer, when isolated from the atmosphere. Preformed nitrate in Pacific Winter Water lacks 18O/16O elevation from nitrate assimilation, contrasting with preformed nitrate in other ocean regions. A reactive N deficit and elevated nitrate N isotope ratios in the Pacific halocline further indicate substantial N loss to coupled nitrification‐denitrification in shelf sediments upstream. In the Atlantic Water below, nitrate isotope ratios identify two distinct waters entering the Arctic at Fram Strait, from (1) the surface West Spitsbergen Current, bearing isotopic signatures akin to North Atlantic waters, and (2) deeper inflows of waters ventilated in the Nordic Seas, transporting nitrate O isotope ratios indicative of regenerated nitrate. Poorly ventilated Canada Basin Deep Water shows evidence of nominal accrual of remineralized products, and nitrate isotope ratios suggest an influence of slow benthic denitrification on the sea floor. The observations reveal that shelf processes have a disproportionate influence on tracer properties of the Pacific halocline, while those in Atlantic Water are dominated by processes in the Nordic Seas.
Mercury (Hg) is a contaminant of major concern in Arctic marine ecosystems. Decades of Hg observations in marine biota from across the Canadian Arctic show generally higher concentrations in the west than in the east. Various hypotheses have attributed this longitudinal biotic Hg gradient to regional differences in atmospheric or terrestrial inputs of inorganic Hg, but it is methylmercury (MeHg) that accumulates and biomagnifies in marine biota. Here, we present high-resolution vertical profiles of total Hg and MeHg in seawater along a transect from the Canada Basin, across the Canadian Arctic Archipelago (CAA) and Baffin Bay, and into the Labrador Sea. Total Hg concentrations are lower in the western Arctic, opposing the biotic Hg distributions. In contrast, MeHg exhibits a distinctive subsurface maximum at shallow depths of 100–300 m, with its peak concentration decreasing eastwards. As this subsurface MeHg maximum lies within the habitat of zooplankton and other lower trophic-level biota, biological uptake of subsurface MeHg and subsequent biomagnification readily explains the biotic Hg concentration gradient. Understanding the risk of MeHg to the Arctic marine ecosystem and Indigenous Peoples will thus require an elucidation of the processes that generate and maintain this subsurface MeHg maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.