Context. The CoRoT mission has provided thousands of red-giant light curves. The analysis of their solar-like oscillations allows us to characterize their stellar properties. Aims. Up to now, the global seismic parameters of the pressure modes have been unable to distinguish red-clump giants from members of the red-giant branch. As recently done with Kepler red giants, we intend to analyze and use the so-called mixed modes to determine the evolutionary status of the red giants observed with CoRoT. We also aim at deriving different seismic characteristics depending on evolution.Methods. The complete identification of the pressure eigenmodes provided by the red-giant universal oscillation pattern allows us to aim at the mixed modes surrounding the = 1 expected eigenfrequencies. A dedicated method based on the envelope autocorrelation function is proposed to analyze their period separation. Results. We have identified the mixed-mode signature separation thanks to their pattern that is compatible with the asymptotic law of gravity modes. We have shown that, independent of any modeling, the g-mode spacings help to distinguish the evolutionary status of a red-giant star. We then report the different seismic and fundamental properties of the stars, depending on their evolutionary status. In particular, we show that high-mass stars of the secondary clump present very specific seismic properties. We emphasize that stars belonging to the clump were affected by significant mass loss. We also note significant population and/or evolution differences in the different fields observed by CoRoT.
Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (ν max ) of solar-like oscillations and the cut-off frequency (ν c ). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called plateau of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers, which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between ν max and ν c , with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.
We have gathered and analyzed 1493 high-quality multicolor Geneva photometric data taken over 21 years of the B3Vstar HD 129929. We detect six frequencies, among which appear the effects of rotational splitting with a spacing of ∼0.0121 cycles per day, which implies that the star rotates very slowly. A nonadiabatic analysis of the oscillations allows us to constrain the metallicity of the star to Z ϵ [0.017,0.022], which agrees with a similar range derived from spectroscopic data. We provide evidence for the occurrence of core convective overshooting in the star, with α ov = 0.10 ± 0.05, and we rule out rigid rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.