Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.
To our knowledge our results are the first demonstration of the antitumor effect of a hemocyanin other than keyhole limpet hemocyanin. They suggest that this is an ancient conserved immunogenic mechanism shared by those hemocyanins that is able to enhance T helper type 1 immunity and lead to antitumor activity. Therefore, Concholepas concholepas hemocyanin may be an alternative candidate for providing safe and effective immunotherapy for human superficial bladder cancer.
We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca 2؉ and/or Mg 2؉ in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4°C, increases at 37°C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg 2؉ is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.
Background: The exposure of human skin to leaves and branches of litre (Lithraea caustica), a Chilean endemic tree, induces a severe contact dermatitis characterized by swelling and pruritus in susceptible individuals. The allergenic priniciple of litre is 3–pentadecyl (10–enyl) catechol (litreol), which is structurally similar to the allergens isolated from poison oak and poison ivy. All of them belong to a family of compounds named urushiols. As a proelectrophilic allergen, litreol must be intracellularly activated before modifying proteins of individuals exposed to it. As a result, self–peptides derived from litreol–modified intracellular proteins would be presented in the context of class I MHC molecules. We hypothesized that CD8+ T lymphocytes would play a major role during the effector phase of the immune response induced by those modified peptides. In order to test this hypothesis, we investigated the cellular immune response to litreol in Balb/cJ mice. The role of the different lymphocyte subpopulations in this response was assessed by immunodepleting mice of CD4+ or CD8+ T lymphocytes using specific monoclonal antibodies (mAbs). We report the observation that the contact dermatitis induced by litreol has two components: a primary response which does not require TCRαβ+ T cells, and a secondary response mediated mainly by CD8+ T cells and regulated by CD4+ T cells. Our results show that CD8+ lymphocytes play a central role as effectors of the secondary response to litreol. Furthermore, our data suggest that two functionally different CD4+ T subpopulations serve as regulators of the CD8+ T cell function: a CD4+ T helper population sensitive to a low dose of the depleting mAb, and CD4+ T suppressor population which is eliminated only with a high dose of depleting mAb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.