The specific associations between antidepressant treatment and alterations in the levels of cytokines remain to be elucidated. In this study, we aimed to explore the role of IL-2, IL-4, IL-12, TNF-α, TGF-β1, and MCP-1 in major depression and to investigate the effects of sertraline therapy. Cytokine and chemokine levels were measured at the time of admission and 8 weeks after sertraline treatment. Our results suggest that the proinflammatory cytokines (IL-2, IL-12, and TNF-α) and MCP-1 were significantly higher, whereas anti-inflammatory cytokines IL-4 and TGF-β1 were significantly lower in patients with major depression than those of healthy controls. It seems likely that the sertraline therapy might have exerted immunomodulatory effects through a decrease in the proinflammatory cytokine IL-12 and an increase in the anti-inflammatory cytokines IL-4 and TGF-β1. In conclusion, our results indicate that Th1-, Th2-, and Th3-type cytokines are altered in the depressed patients and some of them might have been corrected by sertraline treatment.
The biodistribution of radioactivity after the administration of a new tracer for alpha4beta2 nicotinic acetylcholine receptors (nAChRs), [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), was studied in ten healthy human subjects. Following administration of 98+/-6 MBq [123I]5-I-A-85380, serial whole-body images were acquired over 24 h and corrected for attenuation. One to four brain single-photon emission tomography (SPET) images were also acquired between 2.5 and 24 h. Estimates of radiation absorbed dose were calculated using MIRDOSE 3.1 with a dynamic bladder model and a dynamic gastrointestinal tract model. The estimates of the highest absorbed dose (microGy/MBq) were for the urinary bladder wall (71 and 140), lower large intestine wall (70 and 72), and upper large intestine wall (63 and 64), with 2.4-h and 4.8-h urine voiding intervals, respectively. The whole brain activity at the time of the initial whole-body imaging at 14 min was 5.0% of the injected dose. Consistent with the known distribution of alpha4beta2 nAChRs, SPET images showed the highest activity in the thalamus. These results suggest that [123I]5-I-A-85380 is a promising SPET agent to image alpha4beta2 nAChRs in humans, with acceptable dosimetry and high brain uptake.
The purpose of this study was to assess the utility of a new single-photon emission tomography ligand, [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), to measure regional nAChR binding in human brain. Six healthy nonsmoker subjects (two men and four women, age 33 +/- 15 years) participated in both a bolus (dose: 317 +/- 42 MBq) and a bolus plus constant infusion (dose of bolus: 98 +/- 32 MBq, B/I=6.7 +/- 2.6 h, total dose: 331 +/- 55 MBq) study. The study duration was 5-8 h and 14 h in the former and the latter, respectively. Nonlinear least-squares compartmental analysis was applied to bolus studies to calculate total (VT') and specific (VS') distribution volumes. A two-tissue compartment model was applied to identify VS'. VT' was also calculated in B/I studies. In bolus studies, VT' was well identified by both one- and two-tissue compartment models, with a coefficient of variation of less than 5% in most regions. The two-compartment model gave VT' values of 51, 22, 27, 32, 20, 19, 20, and 17 ml cm(-3) in thalamus, cerebellum, putamen, pons, and frontal, parietal, temporal, and occipital cortices, respectively. The two-compartment model did not identify VS' well. B/I studies provided poor accuracy of VT' measurement, possibly due to deviations from equilibrium conditions. These results demonstrate the feasibility of quantifying high-affinity type nAChRs using [123I]5-I-A-85380 in humans and support the use of VT' measured by bolus studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.