Multivalent display of receptor-engaging antibodies or ligands can enhance their activity. Instead of achieving multivalency by attachment to preexisting scaffolds, here we unite form and function by the computational design of nanocages in which one structural component is an antibody or Fc-ligand fusion and the second is a designed antibody-binding homo-oligomer that drives nanocage assembly. Structures of eight nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage, respectively, closely match the corresponding computational models. Antibody nanocages targeting cell surface receptors enhance signaling compared with free antibodies or Fc-fusions in death receptor 5 (DR5)–mediated apoptosis, angiopoietin-1 receptor (Tie2)–mediated angiogenesis, CD40 activation, and T cell proliferation. Nanocage assembly also increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc–angiotensin-converting enzyme 2 (ACE2) fusion proteins.
Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by ⍺-SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.
Protein crystallization plays a central role in structural biology, with broad impact in pharmaceutical formulation, drug delivery, biosensing, and biocatalysis. Despite this importance, the process of protein crystallization remains poorly understood and highly empirical, with largely unpredictable crystal contacts, lattice packing arrangements, and space group preferences, and the programming of protein crystallization through precisely engineered sidechain-sidechain interactions across multiple protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach to designing three-dimensional(3D) protein crystals with pre-specified lattice architectures at atomic accuracy that hierarchically constrains the overall degree of freedoms (DOFs) of the system. We use the approach to design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into large 3D crystals (>100 micrometers). Small-angle X-ray scattering and X-ray crystallography show these crystals are nearly identical to the computational design models, with the design target F4132 and I432 space groups and closely corresponding overall architectures and protein-protein interfaces. The crystal unit cell dimensions can be systematically redesigned while retaining space group symmetry and overall architecture, and the crystals are both extremely porous and highly stable, enabling the robust scaffolding of inorganic nanoparticle arrays. Our approach thus enables the computational design of protein crystals with high accuracy, and since both structure and assembly are encoded in the primary sequence, provides a powerful new platform for biological material engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.