RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2–9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0–65.1%) of the FL transcript, although only c.202G > A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T > C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Background: The myeloid-epithelial-reproductive tyrosine kinase (MERTK) is involved in hepatic steatosis, inflammation, and liver fibrosis. Here we evaluated the association between the MERTK rs4374383 single nucleotide polymorphism (SNP) and liver fibrosis progression in hepatitis C virus (HCV)-infected patients. Methods: We performed a retrospective study (repeated measures design) in 208 patients who had liver stiffness measurement (LSM), which was assessed using transient elastography. No patient had cirrhosis at baseline (LSM ≥ 12.5 kPa). Results: At baseline, 53.8% were male, the median age was 47.1 years, 13.5% reported a high intake of alcohol, 10.1% were prior injection drug users, 85.3% were infected with HCV genotype 1, and 22.6% had previously failed antiviral therapy (pegylated-interferon-alpha/ribavirin). During a median follow-up of 46.6 months, 26 patients developed cirrhosis. The rs4374383 G carriers had a higher risk of increasing LSM (adjusted arithmetic mean ratio (aAMR) = 1.14; p = 0.006) and a higher likelihood of having an increase in LSM greater than 5 kPa (ΔLSM ≥ 5 kPa) (adjusted odds ratio (aOR) = 2.37; p = 0.029), and greater than 7 kPa (ΔLSM ≥ 7 kPa) (aOR = 3.24; p = 0.032), after controlling for confounding. The SNP’s association with cirrhosis progression was close to statistical significance (aOR = 2.18; p = 0.070). Conclusions: MERTK rs4374383 A carriers had a lower risk of liver fibrosis progression than G carriers, supporting the hypothesis that this SNP seems to have a critical role in the pathogenesis of liver disease in HCV-infected patients.
The transfer messenger RNA (tmRNA), encoded by the ssrA gene, is a small non-coding RNA involved in trans-translation that contributes to the recycling of ribosomes stalled on aberrant mRNAs. In most bacteria, its inactivation has been related to a decreased ability to respond to and recover from a variety of stress conditions. In this report, we investigated the role of tmRNA in stress adaptation in the human pathogen Streptococcus pneumoniae. We constructed a tmRNA deletion mutant and analyzed its response to several lethal stresses. The ΔssrA strain grew slower than the wild type, indicating that, although not essential, tmRNA is important for normal pneumococcal growth. Moreover, deletion of tmRNA increased susceptibility to UV irradiation, to exogenous hydrogen peroxide and to antibiotics that inhibit protein synthesis and transcription. However, the ΔssrA strain was more resistant to fluoroquinolones, showing twofold higher MIC values and up to 1000-fold higher survival rates than the wild type. Deletion of SmpB, the other partner in trans-translation, also reduced survival to levofloxacin in a similar extent. Accumulation of intracellular reactive oxygen species associated to moxifloxacin and levofloxacin treatment was also highly reduced (∼100-fold). Nevertheless, the ΔssrA strain showed higher intracellular accumulation of ethidium bromide and levofloxacin than the wild type, suggesting that tmRNA deficiency protects pneumococcal cells from fluoroquinolone-mediated killing. In fact, analysis of chromosome integrity revealed that deletion of tmRNA prevented the fragmentation of the chromosome associated to levofloxacin treatment. Moreover, such protective effect appears to relay mainly on inhibition of protein synthesis, since a similar effect was observed with antibiotics that inhibit that process. The emergence and spread of drug-resistant pneumococci is a matter of concern and these results contribute to a better comprehension of the mechanisms underlying fluoroquinolones action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.