Seeking the identification ofA. cantonensis has already been found in Southeast Asia, South Pacific, Africa, India, Caribbean, Australia, North America (Pien & Pien 1999), Jamaica (Lindo et al. 2002) and Haiti (Raccurt et al. 2003).Eosinophilic meningitis is a rare clinical entity that is defined by the presence of 10 or more eosinophils/ ml in the cerebrospinal fluid (CSF) or a CSF eosinophilia of at least 10% of the total CSF leukocyte count (Kuberski 1979). The most common cause is invasion of the central nervous system by helminthic parasites, inciting an inflammatory response that eventually kills the parasites. Clinical manifestations, which develop in humans at two to 35 days after larvae ingestion, may include headache, nuchal rigidity and visual disturbances (Koo et al. 1988). Cerebral angiostrongyliasis usually has an incubation period of about two weeks, although it may vary from 12 to 28 days (Dooley & Neafie 1976). Paresthesias of the extremities, trunk or face, are the most distinctive neurological findings and can persist for weeks to months after the other symptoms are resolved. Occasionally, infective larvae can migrate to the eye, causing retinal detachment or intraocular hemorrhage, but most patients recover completely (Alicata 1962, Sawanyawisuth et al. 2007. In Brazil, a clinical case of eosinophilic meningoencephalitis that resulted in death ten days after ingestion of three Achatina fulica snails was reported in a regional meeting in 2006 (AVS Moll, G Zanini and C Graeff-Teixeira, unpublished observations).In January 2007, two male individuals aged 21 and 39 years were admitted to the local hospital of Cariacica, state of Espírito Santo (ES), Brazil, with eosinophilic meningitis and history of ingestion of raw terrestrial slugs. By that time, a male child aged one year and eight months from the city of Vila Velha, ES, had also been admitted to the hospital with similar symptoms.A number of 270 mollusc specimens and feces from Rattus norvergicus were collected with a grasping tool, in peridomiciliary areas of the patients' houses by health agents of the Central Laboratory of the ES (LACEN-ES). The materials were sent to the Laboratory of Intestinal Helminthiasis of Instituto René Rachou-Fiocruz for mollusc morphological identification and molecular characterization of nematode larvae. The gastropods were identified as: Sarasinula marginata (Semper, 1885) (Veronicellidae), 45 specimens, Subulina octona (Bruguière, 1792) (Subulinidae), 157 specimens, A. fulica (Bowdich, 1822) (Achatinidae), 45 specimens, and Bradybaena similaris (Férussac, 1821) (Bradybaenidae), 23 specimens.
The risk assessment of nanomaterials is essential for regulatory purposes and for sustainable nanotechnological development. Although the application of graphene oxide has been widely exploited, its environmental risk is not well understood because several environmental conditions can affect its behavior and toxicity. In the present study, the graphene oxide effect from aquatic ecosystems was assessed considering the interaction with humic acid on 9 organisms: Raphidocelis subcapitata (green algae), Lemna minor (aquatic plant), Lactuca sativa (lettuce), Daphnia magna (planktonic microcrustacean), Artemia salina (brine shrimp), Chironomus sancticaroli (Chironomidae), Hydra attenuata (freshwater polyp), and Caenorhabditis elegans and Panagrolaimus sp. (nematodes). The no-observed-effect concentration (NOEC) was calculated for each organism. The different criteria used to calculate NOEC values were transformed and plotted as a log-logistic function. The hypothetical 5 to 50% hazardous concentration values were, respectively, 0.023 (0.005-0.056) and 0.10 (0.031-0.31) mg L for graphene oxide with and without humic acid, respectively. The safest scenario associated with the predicted no-effect concentration values for graphene oxide in the aquatic compartment were estimated as 20 to 100 μg L (in the absence of humic acid) and 5 to 23 μg L (in the presence of humic acid). Finally, the present approach contributed to the risk assessment of graphene oxide-based nanomaterials and the establishment of nano-regulations. Environ Toxicol Chem 2018;37:1998-2012. © 2018 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.