We study the history from z ∼ 2 to z ∼ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with M * > 10 10 M ⊙ , corrected for mass-to-light ratio (M * /L) variations, and derive the half-mass radius (R m ), central stellar mass surface density within 1 kpc (Σ 1 ) and surface density at R m (Σ m ) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z ∼ 2 to z ∼ 0 by a factor of ∼ 3 − 5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ∼ 2. The central densities Σ 1 of quiescent galaxies decline slightly (by a factor of 1.7) from z ∼ 2 to z ∼ 0, while for star-forming galaxies Σ 1 increases with time, at fixed mass. We show that the central density Σ 1 has a tighter correlation with specific star-formation rate (sSFR) than Σ m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density (Σ 1 10 10 M ⊙ kpc 2 ) seems to be a prerequisite for the cessation of star formation, though a causal link between high Σ 1 and quenching is difficult to prove and their correlation can have a different origin.
We present a convenient, all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data. The GIST pipeline (Galaxy IFU Spectroscopy Tool) is entirely written in Python 3 and conducts all steps from the preparation of input data, over the scientific analysis to the production of publication-quality plots. In its basic setup, it extracts stellar kinematics, performs an emission-line analysis and derives stellar population properties from full spectral fitting as well as via the measurement of absorption line-strength indices by exploiting the well-known pPXF and GandALF routines, where the latter has now been implemented in Python. The pipeline is not specific to any instrument or analysis technique and provides easy means of modification and further development, as of its modular code architecture. An elaborate, Python-native parallelisation is implemented and tested on various machines. The software further features a dedicated visualization routine with a sophisticated graphical user interface. This allows an easy, fullyinteractive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models. The pipeline has successfully been applied to both low and high-redshift data from MUSE, PPAK (CALIFA), and SINFONI, as well as to simulated data for HARMONI@ELT and WEAVE and is currently being used by the TIMER, Fornax3D, and PHANGS collaborations. We demonstrate its capabilities by applying it to MUSE TIMER observations of NGC 1433.
There have been a number of studies dedicated to identification of fossil galaxy groups, arguably groups with a relatively old formation epoch. Most of such studies identify fossil groups, primarily based on a large luminosity gap, which is the magnitude gap between the two most luminous galaxies in the group. Studies of these types of groups in the millennium cosmological simulations show that, although they have accumulated a significant fraction of their mass, relatively earlier than groups with a small luminosity gap, this parameter alone is not highly efficient in fully discriminating between the "old" and "young" galaxy groups, a label assigned based on halo mass accumulation history.We study galaxies drawn from the semi-analytic models of Guo et al. (2011), based on the Millennium Simulation. We establish a set of four observationally measurable parameters which can be used in combination, to identify a subset of galaxy groups which are old, with a very high probability. We thus argue that a sample of fossil groups selected based on luminosity gap will result in a contaminated sample of old galaxy groups. By adding constraints on the luminosity of the brightest galaxy, and its offset from the group luminosity centroid, we can considerably improve the age-dating.
An optical monitoring survey in nearby dwarf galaxies was carried out with the 2.5 m Isaac Newton Telescope. Fifty-five dwarf galaxies and four isolated globular clusters in the Local Group were observed with the Wide Field Camera. The main aims of this survey are to identify the most evolved asymptotic giant branch (AGB) stars and red supergiants at the end-point of their evolution based on their pulsational instability, use their distribution over luminosity to reconstruct the star formation history, quantify the dust production and mass loss from modeling the multiwavelength spectral energy distributions (SEDs), and relate this to luminosity and radius variations. In this first of a series of papers, we present the methodology of the variability survey and describe the photometric catalog of the Andromeda I (And I) dwarf galaxy as an example of the survey, and we discuss the identified long period variable (LPV) stars. We detected 5581 stars and identified 59 LPV candidates within two half-light radii of the center of And I. The amplitudes of these candidates range from 0.2 to 3 mag in the i-band. Seventy-five percent of detected sources and 98% of LPV candidates are detected at mid-infrared wavelengths. We show evidence for the presence of dust-producing AGB stars in this galaxy including five extreme AGB (x-AGB) stars, and we model some of their SEDs. A distance modulus of 24.41 mag for And I was determined based on the tip of the red giant branch. Also, a half-light radius of 3 2±0 3 was calculated. Unified AstronomyThesaurus concepts: Asymptotic giant branch stars (2100); Local Group (929); Stellar mass loss (1613); Stellar evolution (1599); Luminosity function (942); Stellar mass functions (1612); Stellar oscillations (1617); Galaxy stellar content (621); Dwarf galaxies (416); Surveys (1671); Long period variable stars (935); Galaxy distances (590)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.