BackgroundSingle-center studies suggest that neonatal acute kidney injury (AKI) is associated with poor outcomes. However, inferences regarding the association between AKI, mortality, and hospital length of stay are limited due to the small sample size of those studies. In order to determine whether neonatal AKI is independently associated with increased mortality and longer hospital stay, we analyzed the Assessment of Worldwide Acute Kidney Epidemiology in Neonates (AWAKEN) database.MethodsAll neonates admitted to 24 participating neonatal intensive care units from four countries (Australia, Canada, India, United States) between January 1 and March 31, 2014, were screened. Of 4273 neonates screened, 2022 (47·3%) met study criteria. Exclusion criteria included: no intravenous fluids ≥48 hours, admission ≥14 days of life, congenital heart disease requiring surgical repair at <7 days of life, lethal chromosomal anomaly, death within 48 hours, inability to determine AKI status or severe congenital kidney abnormalities. AKI was defined using a standardized definition —i.e., serum creatinine rise of ≥0.3 mg/dL (26.5 mcmol/L) or ≥50% from previous lowest value, and/or if urine output was <1 mL/kg/h on postnatal days 2 to 7.FindingsIncidence of AKI was 605/2022 (29·9%). Rates varied by gestational age groups (i.e., ≥22 to <29 weeks =47·9%; ≥29 to <36 weeks =18·3%; and ≥36 weeks =36·7%). Even after adjusting for multiple potential confounding factors, infants with AKI had higher mortality compared to those without AKI [(59/605 (9·7%) vs. 20/1417 (1·4%); p< 0.001; adjusted OR=4·6 (95% CI=2·5–8·3); p=<0·0001], and longer hospital stay [adjusted parameter estimate 8·8 days (95% CI=6·1–11·5); p<0·0001].InterpretationNeonatal AKI is a common and independent risk factor for mortality and longer hospital stay. These data suggest that neonates may be impacted by AKI in a manner similar to pediatric and adult patients.FundingUS National Institutes of Health, University of Alabama at Birmingham, Cincinnati Children’s, University of New Mexico.
In recent years, there have been significant advancements in our understanding of acute kidney injury (AKI) and its impact on outcomes across medicine. Research based on single-center cohorts suggests that neonatal AKI is very common and associated with poor outcomes. In this state-of-the-art review on neonatal AKI, we highlight the unique aspects of neonatal renal physiology, definition, risk factors, epidemiology, outcomes, evaluation, and management of AKI in neonates. The changes in renal function with gestational and chronologic age are described. We put forth and describe the neonatal modified Kidney Diseases: Improving Global Outcomes AKI criteria and provide the rationale for its use as the standardized definition of neonatal AKI. We discuss risk factors for neonatal AKI and suggest which patient populations may warrant closer surveillance, including neonates ,1500 g, infants who experience perinatal asphyxia, near term/ term infants with low Apgar scores, those treated with extracorporeal membrane oxygenation, and those requiring cardiac surgery. We provide recommendations for the evaluation and treatment of these patients, including medications and renal replacement therapies. We discuss the need for long-term follow-up of neonates with AKI to identify those children who will go on to develop chronic kidney disease. This review highlights the deficits in our understanding of neonatal AKI that require further investigation. In an effort to begin to address these needs, the Neonatal Kidney Collaborative was formed in 2014 with the goal of better understanding neonatal AKI, beginning to answer critical questions, and improving outcomes in these vulnerable populations.
Nephrogenesis is ongoing at the time of birth for the majority of preterm infants, but whether postnatal renal development follows a similar trajectory to normal in utero growth is unknown. Here, we examined tissue collected at autopsy from 28 kidneys from preterm neonates, whose postnatal survival ranged from 2 to 68 days, including 6 that had restricted intrauterine growth. In addition, we examined kidneys from 32 still-born gestational controls. We assessed the width of the nephrogenic zone, number of glomerular generations, cross-sectional area of the renal corpuscle, and glomerular maturity and morphology. Renal maturation accelerated after preterm birth, with an increased number of glomerular generations and a decreased width of the nephrogenic zone in the kidneys of preterm neonates. Of particular concern, compared with gestational controls, preterm kidneys had a greater percentage of morphologically abnormal glomeruli and a significantly larger cross-sectional area of the renal corpuscle, suggestive of renal hyperfiltration. These observations suggest that the preterm kidney may have fewer functional nephrons, thereby increasing vulnerability to impaired renal function in both the early postnatal period and later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.