Hippocampal formation (HF) atrophy, although common in normal aging, has unknown clinical consequences. We used MRI to derive HF size measurements at baseline on 44 cognitively normal older adults entering a longitudinal study of memory function (mean age = 68.4 years, mean follow-up = 3.8 years). Only one subject became demented at follow-up. Multiple regression analyses controlling for age, gender, education, and diffuse cerebral atrophy revealed that HF size significantly predicted longitudinal change on memory tests previously found sensitive to decline in normal aging. These results indicate HF atrophy may be a risk factor for accelerated memory dysfunction in normal aging.
We evaluated three groups of elderly individuals who were carefully screened to rule out clinically significant diseases that could affect cognition. They were matched for age and education. The groups included normals (N = 18), Alzheimer's Disease (AD) patients (N = 15), and minimally impaired individuals with memory complaints and impairments but who did not fulfill criteria for AD (N = 17). Volumetric measurements of different regions of the temporal lobe on the coronal scan as well as ratings of the perihippocampal cerebrospinal fluid (CSF) accumulation (HCSF) on the negative angle axial MR were carried out. Volume reductions were found in AD relative to the normals for both medial and lateral temporal lobe volumes. Only hippocampal volume reductions were found in the minimal group. The minimally impaired individuals had equivalent hippocampal volume reductions and significantly larger parahippocampal and lateral temporal lobe gyri than the AD group. The axial HCSF was validated using the coronal volumes. The combination of coronal hippocampal and perihippocampal CSF was the best predictor of the axial HCSF rating. The parahippocampal volume did not add to the predictive ability of the hippocampal-perihippocampal CSF combination. Future work should validate these findings with longitudinal designs as well as assess the issue of normal aging of these structures and their relationship to cognitive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.