The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.
The proteasome was validated as an oncology target following the clinical success of VELCADE (bortezomib) for injection for the treatment of multiple myeloma and recurring mantle cell lymphoma. Consequently, several groups are pursuing the development of additional small-molecule proteasome inhibitors for both hematologic and solid tumor indications. Here, we describe MLN9708, a selective, orally bioavailable, secondgeneration proteasome inhibitor that is in phase I clinical development. MLN9708 has a shorter proteasome dissociation half-life and improved pharmacokinetics, pharmacodynamics, and antitumor activity compared with bortezomib. MLN9708 has a larger blood volume distribution at steady state, and analysis of 20S proteasome inhibition and markers of the unfolded protein response confirmed that MLN9708 has greater pharmacodynamic effects in tissues than bortezomib. MLN9708 showed activity in both solid tumor and hematologic preclinical xenograft models, and we found a correlation between greater pharmacodynamic responses and improved antitumor activity. Moreover, antitumor activity was shown via multiple dosing routes, including oral gavage. Taken together, these data support the clinical development of MLN9708 for both hematologic and solid tumor indications. Cancer Res; 70(5); 1970-80. ©2010 AACR.
IntroductionMLN4924 is a potent and selective small-molecule inhibitor of NEDD8-activating enzyme (NAE) that is currently in phase 1 clinical trials. 1-3 NAE plays an essential role in regulating the activity of a subset of ubiquitin E3 ligases, the cullin-RING ligases (CRLs), which are responsible for regulating destruction of many intracellular proteins. 4 NAE activates the small ubiquitin-like molecule NEDD8 as the first step in the neddylation cascade. 5 NAE hydrolyzes adenosine triphosphate (ATP) to adenylate NEDD8 at its C-terminus and transfers NEDD8 from the adenyl group to a specific cysteine within NAE. The activated NEDD8 is then transferred to the active-site cysteine of Ubc12 or UBE2F the E2s specific for the NEDD8 pathway. Finally, NEDD8 is conjugated on a conserved lysine near the C-terminal end of a cullin protein; this covalent modification is required for the cullin complex to recruit a ubiquitin-charged E2 protein facilitating polyubiquitination of proteins, targeting them for proteasomal degradation. Thus, NAE plays a key role in regulating the levels (and therefore the function) of a subset of proteins.Many of the proteins that are substrates for CRL-mediated polyubiquitination have key roles in cell-cycle progression and signal transduction, making NAE inhibition an attractive target for anticancer therapy. MLN4924 potently inhibits NAE in vitro, resulting in inhibition of CRL neddylation and an increase in levels of CRL substrate proteins (eg, Cdt-1, Nrf-2). 3 The primary mechanism of action of NAE inhibition in many cell types is induction of DNA rereplication because of blocking degradation of Cdt-1, a critical factor required for licensing origins of DNA replication. 3 Dysregulation of Cdt-1 activity leads to DNA rereplication. 6,7 For example, overexpression of Cdt-1 and Cdc6 induces DNA rereplication, activates DNA damage repair pathways, and induces cell death. 7 Induction of DNA rereplication by MLN4924 results in S-phase accumulation, DNA-damage responses, and cell death 3 (M.A.M., U.N., T.A.S., P. Veiby, P.G.S., B. Amidon, manuscript in preparation). Similar effects were observed in human tumor xenografts where MLN4924 inhibited NAE in vivo leading to tumor growth inhibition. 3 The nuclear factor-B (NF-B) signaling pathway plays a key role in many aspects of cancer initiation and progression through transcriptional control of genes involved in growth, angiogenesis, antiapoptosis, invasiveness, and metastasis. 8 Regulation of NF-B signaling occurs at many levels, one of which is through the regulation of protein turnover by the action of CRLs. Under normal conditions, NF-B transcription factors are maintained in an inactive state by binding to IB proteins. In canonical NF-B signaling, IB␣ binds to p50-p65, sequesters the transcription factors in the cytoplasm rendering them inactive. On stimulation of the IKK complex, IB␣ is phosphorylated at Ser32 and Ser36, resulting in its polyubiquitination and degradation, 9-11 thus resulting in nuclear accumulation of the complex and transcri...
Purpose: To determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of the investigational NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/ MLN4924) and to investigate pevonedistat pharmacokinetics and pharmacodynamics in patients with advanced nonhematologic malignancies.Experimental Design: Pevonedistat was administered via 60-minute intravenous infusion on days 1 to 5 (schedule A, n ¼ 12), or days 1, 3, and 5 (schedules B, n ¼ 17, and C, n ¼ 19) of 21-day cycles. Schedule B included oral dexamethasone 8 mg before each pevonedistat dose. Dose escalation proceeded using a Bayesian continual reassessment method. Tumor response was assessed by RECIST 1.0.Results: Schedule A MTD was 50 mg/m 2 ; based on the severity of observed hepatotoxicity, this schedule was discontinued. Schedules B and C MTDs were 50 and 67 mg/m 2 , respectively. DLTs on both these schedules included hyperbilirubinemia and elevated aspartate aminotransferase. There were no grade !3 treatmentrelated serious adverse events reported on schedules B or C.
Purpose Evaluate the safety, pharmacokinetic profile, pharmacodynamic effects, and antitumor activity of the first-in-class investigational NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924) in patients with relapsed/refractory lymphoma or multiple myeloma. Experimental Design Patients with relapsed/refractory myeloma (n=17) or lymphoma (n=27) received intravenous pevonedistat 25–147 mg/m2 on days 1, 2, 8, 9 (schedule A; n=27) or 100–261 mg/m2 on days 1, 4, 8, 11 (schedule B; n=17) of 21-day cycles. Results Maximum tolerated doses were 110 mg/m2 (schedule A) and 196 mg/m2 (schedule B). Dose-limiting toxicities included febrile neutropenia, transaminase elevations, muscle cramps (schedule A), and thrombocytopenia (schedule B). Common adverse events included fatigue and nausea. Common grade ≥3 events were anemia (19%; schedule A), and neutropenia and pneumonia (12%; schedule B). Clinically significant myelosuppression was uncommon. There were no treatment-related deaths. Pevonedistat pharmacokinetics exhibited a biphasic disposition phase and approximate dose-proportional increases in systemic exposure. Consistent with the short mean elimination half-life of ~8.5 hours, little-to-no drug accumulation in plasma was seen after multiple dosing. Pharmacodynamic evidence of NAE inhibition included increased skin levels of CDT-1 and NRF-2 (substrates of NAE-dependent ubiquitin ligases), and increased NRF-2-regulated gene transcript levels in whole blood. Pevonedistat-NEDD8 adduct was detected in bone marrow aspirates, indicating pevonedistat target engagement in the bone marrow compartment. Three lymphoma patients had partial responses; 30 patients achieved stable disease. Conclusions Pevonedistat demonstrated anticipated pharmacodynamic effects in the clinical setting, a tolerable safety profile, and some preliminary evidence that may be suggestive of the potential for activity in relapsed/refractory lymphoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.