The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease‐associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population‐specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad‐based oncogenetic testing in some populations.
Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.
De novo STXBP1 mutations are among the most frequent causes of epilepsy and encephalopathy. Most patients have severe to profound ID with little correlation among seizure onset, seizure severity, and the degree of ID. Accordingly, we hypothesize that seizure severity and ID present 2 independent dimensions of the STXBP1-E phenotype. STXBP1-E may be conceptualized as a complex neurodevelopmental disorder rather than a primary epileptic encephalopathy.
Mandibulofacial dysostosis with microcephaly (MFDM) is a rare sporadic syndrome comprising craniofacial malformations, microcephaly, developmental delay, and a recognizable dysmorphic appearance. Major sequelae, including choanal atresia, sensorineural hearing loss, and cleft palate, each occur in a significant proportion of affected individuals. We present detailed clinical findings in 12 unrelated individuals with MFDM; these 12 individuals compose the largest reported cohort to date. To define the etiology of MFDM, we employed whole-exome sequencing of four unrelated affected individuals and identified heterozygous mutations or deletions of EFTUD2 in all four. Validation studies of eight additional individuals with MFDM demonstrated causative EFTUD2 mutations in all affected individuals tested. A range of EFTUD2-mutation types, including null alleles and frameshifts, is seen in MFDM, consistent with haploinsufficiency; segregation is de novo in all cases assessed to date. U5-116kD, the protein encoded by EFTUD2, is a highly conserved spliceosomal GTPase with a central regulatory role in catalytic splicing and post-splicing-complex disassembly. MFDM is the first multiple-malformation syndrome attributed to a defect of the major spliceosome. Our findings significantly extend the range of reported spliceosomal phenotypes in humans and pave the way for further investigation in related conditions such as Treacher Collins syndrome.
Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome (MIM 208085) is an autosomal recessive multisystem disorder that may be associated with germline VPS33B mutations. VPS33B is involved in regulation of vesicular membrane fusion by interacting with SNARE proteins, and evidence of abnormal polarised membrane protein trafficking has been reported in ARC patients. We characterised clinical and molecular features of ARC syndrome in order to identify potential genotype-phenotype correlations. The clinical phenotype of 62 ARC syndrome patients was analysed. In addition to classical features described previously, all patients had severe failure to thrive, which was not adequately explained by the degree of liver disease and 10% had structural cardiac defects. Almost half of the patients who underwent diagnostic organ biopsy (7/16) developed life-threatening haemorrhage. We found that most patients (9/11) who suffered severe haemorrhage (7 post biopsy and 4 spontaneous) had normal platelet count and morphology. Germline VPS33B mutations were detected in 28/35 families (48/62 individuals) with ARC syndrome. Several mutations were restricted to specific ethnic groups. Thus p.Arg438X mutation was common in the UK Pakistani families and haplotyping was consistent with a founder mutation with the most recent common ancestor 900-1,000 years ago. Heterozygosity was found in the VPS33B locus in some cases of ARC providing the first evidence of a possible second ARC syndrome gene. In conclusion we state that molecular diagnosis is possible for most children in whom ARC syndrome is suspected and VPS33B mutation analysis should replace organ biopsy as a first line diagnostic test for ARC syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.