Plant growth promoting rhizobacteria (PGPR) hold promising future for sustainable agriculture. Here, we demonstrate a carotenoid producing halotolerant PGPR Dietzia natronolimnaea STR1 protecting wheat plants from salt stress by modulating the transcriptional machinery responsible for salinity tolerance in plants. The expression studies confirmed the involvement of ABA-signalling cascade, as TaABARE and TaOPR1 were upregulated in PGPR inoculated plants leading to induction of TaMYB and TaWRKY expression followed by stimulation of expression of a plethora of stress related genes. Enhanced expression of TaST, a salt stress-induced gene, associated with promoting salinity tolerance was observed in PGPR inoculated plants in comparison to uninoculated control plants. Expression of SOS pathway related genes (SOS1 and SOS4) was modulated in PGPR-applied wheat shoots and root systems. Tissue-specific responses of ion transporters TaNHX1, TaHAK, and TaHKT1, were observed in PGPR-inoculated plants. The enhanced gene expression of various antioxidant enzymes such as APX, MnSOD, CAT, POD, GPX and GR and higher proline content in PGPR-inoculated wheat plants contributed to increased tolerance to salinity stress. Overall, these results indicate that halotolerant PGPR-mediated salinity tolerance is a complex phenomenon that involves modulation of ABA-signalling, SOS pathway, ion transporters and antioxidant machinery.
Abiotic stresses such as salt and drought represent adverse environmental conditions that significantly damage plant growth and agricultural productivity. In this study, the mechanism of the plant growth-promoting rhizo-bacteria (PGPR)-stimulated tolerance against abiotic stresses has been explored. Results suggest that PGPR strains, Arthrobacter protophormiae (SA3) and Dietzia natronolimnaea (STR1), can facilitate salt stress tolerance in wheat crop, while Bacillus subtilis (LDR2) can provide tolerance against drought stress in wheat. These PGPR strains enhance photosynthetic efficiency under salt and drought stress conditions. Moreover, all three PGPR strains increase indole-3-acetic acid (IAA) content of wheat under salt and drought stress conditions. The SA3 and LDR2 inoculations counteracted the increase of abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylate (ACC) under both salt and drought stress conditions, whereas STR1 had no significant impact on the ABA and ACC content. The impact of PGPR inoculations on these physiological parameters were further confirmed by gene expression analysis as we observed enhanced levels of the TaCTR1 gene in SA3-, STR1- and LDR2-treated wheat seedlings as compared to uninoculated drought and salt stressed plants. PGPR inoculations enhanced expression of TaDREB2 gene encoding for a transcription factor, which has been shown to be important for improving the tolerance of plants to abiotic stress conditions. Our study suggest that PGPR confer abiotic stress tolerance in wheat by enhancing IAA content, reducing ABA/ACC content, modulating expression of a regulatory component (CTR1) of ethylene signaling pathway and DREB2 transcription factor.
Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant.
Anthropogenic disturbances are detrimental to the functioning and stability of natural ecosystems. Critical ecosystem processes driven by microbial communities are subjected to these disturbances. Here, we examine the stabilizing role of bacterial diversity on community biomass in the presence of abiotic perturbations such as addition of heavy metals, NaCl and warming. Bacterial communities with a diversity gradient of 1-12 species were subjected to the different treatments, and community biomass (OD 600 ) was measured after 24 h. We found that initial species richness and phylogenetic structure impact the biomass of communities. Under abiotic perturbations, the presence of tolerant species in community largely contributed in community biomass production. Bacterial diversity stabilized the biomass across the treatments, and differential response of bacterial species to different perturbations was the key reason behind these effects. The results suggest that biodiversity is crucial for maintaining the stability of ecosystem functioning and acts as ecological insurance under abiotic perturbations. Biodiversity in natural ecosystems may also uphold the ecosystem functioning under anthropogenic disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.