Survival estimate precision in early years of the study; however, are poor. Capture-recapture models and size composition data indicate that recruitment of new individuals into the SNS spawning population was trivial from 2001 to 2005. Models indicate that more than 10 percent of the population was new recruits in a number of more recent years. As a result, capture-recapture modeling suggests that the abundance of adult spawning SNS was relatively stable from 2006 to 2010. We are skeptical of the estimated recruitment in 2006 because of the known sampling issue. We also are skeptical of the estimated recruitment in other recent years because few small individuals that would indicate the presence of new recruits were captured in any of those years, and recapture probabilities in recruitment models were low. The best-case scenario for SNS, based on capture-recapture recruitment modeling, indicates that the abundance of males in the spawning population decreased by 78 percent and the abundance of females decreased by 77 percent from 2001 to 2015. Decreases in abundance for both sexes are likely greater than these estimates indicate. Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains distressed, especially for SNS. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit http://www.usgs.gov/ or call 1-888-ASK-USGS (1-888-275-8747).For an overview of USGS information products, including maps, imagery, and publications, visit
We analyzed remote detection data from PIT‐tagged Lost River Suckers Deltistes luxatus at four shoreline spawning areas in Upper Klamath Lake, Oregon, to determine whether spawning of this endangered species was affected by low water levels. Our investigation was motivated by the observation that the surface elevation of the lake during the 2010 spawning season was the lowest in 38 years. Irrigation withdrawals in 2009 that were not replenished by subsequent winter–spring inflows caused a reduction in available shoreline spawning habitat in 2010. We compared metrics of skipped spawning, movement among spawning areas, and spawning duration across 8 years (2006–2013) that had contrasting spring water levels. Some aspects of sucker spawning were similar in all years, including few individuals straying from the shoreline areas to spawning locations in lake tributaries and consistent effects of increasing water temperatures on the accumulation of fish at the spawning areas. During the extreme low water year of 2010, 14% fewer female and 8% fewer male suckers joined the shoreline spawning aggregation than in the other years. Both males and females visited fewer spawning areas within Upper Klamath Lake in 2010 than in other years, and the median duration at spawning areas in 2010 was at least 36% shorter for females and 20% shorter for males relative to other years. Given the imperiled status of the species and the declining abundance of the population in Upper Klamath Lake, any reduction in spawning success and egg production could negatively impact recovery efforts. Our results indicate that lake surface elevations above 1,262.3–1,262.5 m would be unlikely to limit the number of spawning fish and overall egg production.
Received May 16, 2014; accepted January 29, 2015
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.