Glycans and glycan binding proteins (GBPs or lectins) are essential components in almost every aspect of immunology. Investigations of the interactions between glycans and GBPs have greatly advanced our understanding of the molecular basis of these fundamental immunological processes. In order to better study the glycan-GBP interactions, microscope glass slide-based glycan microarrays were conceived and proved to be an incredibly useful and successful tool. A variety of methods have been developed to better present the glycans so that they mimic natural presentations. Breakthroughs in chemical biology approaches have also made available glycans with sophisticated structures that were considered practically impossible just a few decade ago. Glycan microarrays provide a wealth of valuable information in immunological studies. They allow for discovery of detailed glycan binding preferences or novel binding epitopes of known endogenous immune receptors, which can potentially lead to the discovery of natural ligands that carry the glycans. Glycan microarrays also serve as a platform to discover new GBPs that are vital to the process of infection and invasion by microorganisms. This review summarizes the construction strategies and the immunological applications of glycan microarrays, particularly focused on those with the most comprehensive sets of glycan structures. We also review new methods and technologies that have evolved. We believe that glycan microarrays will continue to benefit the growing research community with various interests in the field of immunology.
Studies on the expression of cellular glycans are limited by a lack of sensitive tools that can discriminate specific structural features. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus), which secrete variable lymphocyte receptors called VLRBs as antibodies, for generating libraries of anti-glycan reagents. We identified a wide variety of glycan-specific VLRBs detectable in lamprey plasma after immunization with whole fixed cells, tissue homogenates, and human milk. The cDNAs from lamprey lymphocytes were cloned into yeast surface display (YSD) libraries for enrichment by multiple methods. We generated VLRB-Ig chimeras, termed smart anti-glycan reagents (SAGRs), whose specificities were defined by microarray analysis and immunohistochemistry. 15 VLRB antibodies were discovered that discriminated between linkages, functional groups and unique presentations of the terminal glycan motif. The development of SAGRs will enhance future studies on glycan expression by providing sequenced, defined antibodies for a variety of research applications.
Humoral immunity to pathogens and other environmental challenges is paramount to maintain normal health, and individuals lacking or unable to make antibodies are at risk. Recent studies indicate that many human protective antibodies are against carbohydrate antigens; however, little is known about repertoires and individual variation of anti-carbohydrate antibodies in healthy individuals. Here we analyzed anti-carbohydrate antibody repertoires (ACARs) of 105 healthy individual adult donors, aged 20–60+ from different ethnic backgrounds to explore variations in antibodies, as defined by binding to glycan microarrays and by affinity purification. Using microarrays that contained > 1,000 glycans, including antigens from animal cells and microbes, we profiled the IgG and IgM ACARs from all donors. Each donor expressed many ACAs, but had a relatively unique ACAR, which included unanticipated antibodies to carbohydrate antigens not well studied, such as chitin oligosaccharides, Forssman-related antigens, globo-type antigens, and bacterial glycans. We also saw some expected antibodies to ABO(H) blood group and α-Gal-type antigens, although these also varied among individuals. Analysis suggests differences in ACARs are associated with ethnicity and age. Thus, each individual ACAR is relatively unique, suggesting that individualized information could be useful in precision medicine for predicting and monitoring immune health and resistance to disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.