Mutations affecting the levels of microRNA miR-137 are associated with intellectual disability and schizophrenia. However, the pathophysiological role of miR-137 remains poorly understood. Here, we describe a highly conserved miR-137-binding site within the mRNA encoding the GluA1 subunit of AMPA-type glutamate receptors (AMPARs) and confirm that GluA1 is a direct target of miR-137. Postsynaptic downregulation of miR-137 at the CA3-CA1 hippocampal synapse selectively enhances AMPAR-mediated synaptic transmission and converts silent synapses to active synapses. Conversely, miR-137 overexpression selectively reduces AMPAR-mediated synaptic transmission and silences active synapses. In addition, we find that miR-137 is transiently upregulated in response to metabotropic glutamate receptor 5 (mGluR5), but not mGluR1 activation. Consequently, acute interference with miR-137 function impedes mGluR-LTD expression. Our findings suggest that miR-137 is a key factor in the control of synaptic efficacy and mGluR-dependent synaptic plasticity, supporting the notion that glutamatergic dysfunction contributes to the pathogenesis of miR-137-linked cognitive impairments.
Anterior cingulate cortex (ACC) and midcingulate cortex (MCC) have been implicated in the regulation of aggressive behaviour. For instance, patients with conduct disorder (CD) show increased levels of aggression accompanied by changes in ACC and MCC volume. However, accounts of ACC/MCC changes in CD patients have been conflicting, likely due to the heterogeneity of the studied populations. Here, we address these discrepancies by studying volumetric changes of ACC/MCC in the BALB/cJ mouse, a model of aggression, compared to an age- and gender-matched control group of BALB/cByJ mice. We quantified aggression in BALB/cJ and BALB/cByJ mice using the resident–intruder test, and related this to volumetric measures of ACC/MCC based on Nissl-stained coronal brain slices of the same animals. We demonstrate that BALB/cJ behave consistently more aggressively (shorter attack latencies, more frequent attacks, anti-social biting) than the control group, while at the same time showing an increased volume of ACC and a decreased volume of MCC. Differences in ACC and MCC volume jointly predicted a high amount of variance in aggressive behaviour, while regression with only one predictor had a poor fit. This suggests that, beyond their individual contributions, the relationship between ACC and MCC plays an important role in regulating aggressive behaviour. Finally, we show the importance of switching from the classical rodent anatomical definition of ACC as cingulate area 2 and 1 to a definition that includes the MCC and is directly homologous to higher mammalian species: clear behaviour-related differences in ACC/MCC anatomy were only observed using the homologous definition. Electronic supplementary material The online version of this article (10.1007/s00429-018-1816-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.