Rationale Cardiomyocytes differentiated from human pluripotent stem cells (PSCs) are increasingly being used for cardiovascular research including disease modeling and hold promise for clinical applications. Current cardiac differentiation protocols exhibit variable success across different PSC lines and are primarily based on the application of growth factors. However, extracellular matrix (ECM) is also fundamentally involved in cardiac development from the earliest morphogenetic events such as gastrulation. Objective We sought to develop a more effective protocol for cardiac differentiation of human PSCs by using ECM in combination with growth factors known to promote cardiogenesis. Methods and Results PSCs were cultured as monolayers on Matrigel, an ECM preparation, and subsequently overlayed with Matrigel. The matrix sandwich promoted an epithelial-to-mesenchymal transition as in gastrulation with the generation of N-cadherin+ mesenchymal cells. Combining the matrix sandwich with sequential application of growth factors (Activin A, BMP4, and bFGF) generated cardiomyocytes with high purity (up to 98%) and yield (up to 11 cardiomyocytes/input PSC) from multiple PSC lines. The resulting cardiomyocytes progressively mature over 30 days in culture based on myofilament expression pattern and mitotic activity. Action potentials typical of embryonic nodal, atrial and ventricular cardiomyocytes were observed, and monolayers of electrically coupled cardiomyocytes modeled cardiac tissue and basic arrhythmia mechanisms. Conclusions Dynamic ECM application promoted EMT of human PSCs and complemented growth factor signaling to enable robust cardiac differentiation.
Background Human heart failure (HF) is associated with decreased cardiac voltage-gated Na+ channel current (encoded by SCN5A), and the changes have been implicated in the increased risk of sudden death in HF. Nevertheless, the mechanism of SCN5A downregulation is unclear. A number of human diseases are associated with alternative mRNA splicing, which has received comparatively little attention in the study of cardiac disease. Splicing factor expression profiles during human HF and a specific splicing pathway for SCN5A regulation were explored in this paper. Methods and Results Gene array comparisons between normal human and heart failure tissues demonstrated that 17 splicing factors, associated with all major spliceosome components, were upregulated. Two of these splicing factors, RBM25 and LUC7L3, were elevated in human heart failure tissue and mediated truncation of SCN5A mRNA in both Jurkat cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs). RBM25/LUC7L3-mediated abnormal SCN5A mRNA splicing reduced Na+ channel current 91.1 ± 9.3% to a range known to cause sudden death. Overexpression of either splicing factor resulted in an increase in truncated mRNA and a concomitant decrease in the full-length SCN5A transcript. Conclusions Of the 17 mRNA splicing factors upregulated in HF, RBM25 and LUC7L3 were sufficient to explain the increase in truncated forms and the reduction in full length Na+ channel transcript. Since the reduction in channels was in the range known to be associated with sudden death, interruption of this abnormal mRNA processing may reduce arrhythmic risk in heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.