Key pointsr The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle.r Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial.r The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural 'drive' to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation.r Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance.Abstract To investigate the role of metabo-and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre-to post-exercise changes in potentiated quadriceps twitch torque ( QT single ) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (ß8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H + , adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. QT single was greater following FENT than CTRL (−52 ± 2 vs −31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r 2 = 0.79; P < 0.01) and H + (r 2 = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.
Key points• Passive limb movement elicits a robust increase in limb blood flow (LBF) and limb vascular conductance (LVC) without a concomitant increase in skeletal muscle metabolism.• The peripheral vascular mechanisms associated with the increase in LBF and LVC are unknown.• Using an intra-arterial infusion of N G -monomethyl-L-arginine (L-NMMA) to inhibit nitric oxide synthase (NOS) the hyperaemic and vasodilatory response to passive limb movement was attenuated by nearly 80%.• This finding demonstrates that the increases in LBF and LVC during passive limb movement are primarily NO dependent.• Passive limb movement appears to have significant promise as a new approach to assess NO-mediated vascular function, an important predictor of cardiovascular disease risk.Abstract Passive limb movement elicits a robust increase in limb blood flow (LBF) and limb vascular conductance (LVC), but the peripheral vascular mechanisms associated with this increase in LBF and LVC are unknown. This study sought to determine the contribution of nitric oxide (NO) to movement-induced LBF and LVC and document the potential for passive-limb movement to assess NO-mediated vasodilatation and therefore NO bioavailability. Six subjects underwent passive knee extension with and without nitric oxide synthase (NOS) inhibition via intra-arterial infusion of N G -monomethyl-L-arginine (L-NMMA). LBF was determined second-by-second by Doppler ultrasound, and central haemodynamics were measured by finger photoplethysmography. Although L-NMMA did not alter the immediate increase (initial ∼9 s) in LBF and LVC, NOS blockade attenuated the peak increase in LBF (control: 653 ± 81; L-NMMA: 399 ± 112 ml −1 min −1 , P = 0.03) and LVC (control: 7.5 ± 0.8; L-NMMA: 4.1 ± 1.1 ml min −1 mmHg −1 , P = 0.02) and dramatically reduced the overall vasodilatory and hyperaemic response (area under the curve) by nearly 80% (LBF: control: 270 ± 51; L-NMMA: 75 ± 32 ml, P = 0.001; LVC: control: 2.9 ± 0.5; L-NMMA: 0.8 ± 0.3 ml mmHg −1 , P < 0.001). Passive movement in control and L-NMMA trials evoked similar increases in heart rate, stroke volume, cardiac output and a reduction in mean arterial pressure. As movement-induced increases in LBF and LVC are predominantly NO dependent, passive limb movement appears to have significant promise as a new approach to assess NO-mediated vascular function, an important predictor of cardiovascular disease risk.
Key pointsr The concept of symmorphosis predicts that the capacity of each step of the oxygen cascade is attuned to the task demanded of it during aerobic exercise at maximal rates of oxygen consumption (V O 2 max ) such that no single process is limiting or in excess atV O 2 max .r The present study challenges the applicability of this concept to humans by revealing clear, albeit very different, limitations and excesses in oxygen supply and consumption among untrained and endurance-trained humans.r Among untrained individuals,V O 2 max is limited by the capacity of the mitochondria to consume oxygen, despite an excess of oxygen supply, whereas, among trained individuals,V O 2 max is limited by the supply of oxygen to the mitochondria, despite an excess of mitochondrial respiratory capacity. AbstractThe concept of symmorphosis postulates a matching of structural capacity to functional demand within a defined physiological system, regardless of endurance exercise training status. Whether this concept applies to oxygen (O 2 ) supply and demand during maximal skeletal muscle O 2 consumption (V O 2 max ) in humans is unclear. Therefore, in vitro skeletal muscle mitochondrialV O 2 max ( MitoVO 2 max , mitochondrial respiration of fibres biopsied from vastus lateralis) was compared with in vivo skeletal muscleV O 2 max during single leg knee extensor exercise ( KEVO 2 max , direct Fick by femoral arterial and venous blood samples and Doppler ultrasound blood flow measurements) and whole-bodyV O 2 max during cycling ( BodyVO 2 max , indirect calorimetry) in 10 endurance exercise-trained and 10 untrained young males. In untrained subjects, during KE exercise, maximal O 2 supply ( KEQ O 2max ) exceeded (462 ± 37 ml kg −1 min −1 , P < 0.05) and KEVO 2 max matched (340 ± 22 ml kg −1 min −1 , P > 0.05) MitoVO 2 max (364 ± 16 ml kg −1 min −1 ). Conversely, in trained subjects, both KEQ O 2max (557 ± 35 ml kg −1 min −1 ) and KEVO 2 max (458 ± 24 ml kg −1 min −1 ) fell far short of MitoVO 2 max (743 ± 35 ml kg −1 min −1 , P < 0.05). Although MitoVO 2 max was related to KEVO 2 max (r = 0.69, P < 0.05) and BodyVO 2 max (r = 0.91, P < 0.05) in untrained subjects, these variables were entirely unrelated in trained subjects. Therefore, in untrained subjects,V O 2 max is limited by mitochondrial O 2 demand, with evidence of adequate O 2 supply, whereas, in trained subjects, an exercise training-induced mitochondrial reserve results in skeletal muscleV untrained and trained humans and challenge the concept of symmorphosis as it applies to O 2 supply and demand in humans. Abbreviations BIOPS, biopsy preservation fluid; Body, whole-body; KE, knee extensor; Mito, mitochondrial;Q O 2max , maximum specific oxygen uptake rate;V O2max , maximal oxygen uptake; WR max , maximum work rate.
Key pointsr The passive leg movement (PLM) model is a novel approach to assess vascular function. r Increasing femoral perfusion pressure (FPP) by moving from the supine to the upright-seated posture augments the vasodilatory response to PLM in the young, with no effect in the old, but whether this augmented vasodilatation is nitric oxide (NO) dependent is unknown.r Using an intra-arterial infusion of N G -monomethyl-L -arginine ( L -NMMA) to inhibit nitric oxide synthase (NOS), the posture-induced increases in the PLM responses in the young were nearly ablated, with no effect of NOS inhibition in the old.r Therefore, PLM in combination with alterations in posture can be used to determine changes in NO-mediated vasodilatation with age, and thus, may be a clinically useful tool for assessing NO bioavailability across the human lifespan.Abstract We sought to better understand the contribution of nitric oxide (NO) to passive leg movement (PLM)-induced vasodilatation with age, with and without a posture-induced increase in femoral perfusion pressure (FPP). PLM was performed in eight young (24 ± 1 years) and eight old (74 ± 3 years) healthy males, with and without NO synthase inhibition via intra-arterial infusion of N G -monomethyl-L -arginine ( L -NMMA) into the common femoral artery in both the supine and upright-seated posture. Central and peripheral haemodynamic responses were determined second-by-second with finger photoplethysmography and Doppler ultrasound, respectively. PLM-induced increases in heart rate, stroke volume, cardiac output and reductions in mean arterial pressure were similar between age groups and conditions. In the young, L -NMMA attenuated the peak change in leg vascular conductance ( LVC peak ) in both the supine (control: 7.4 ± 0.9; L -NMMA: 5.2 ± 1.1 ml min −1 mmHg −1 , P < 0.05) and upright-seated (control: 12.3 ± 2.0; L -NMMA: 6.4 ± 1.0 ml min −1 mmHg −1 , P < 0.05) posture, with no significant change in the old (supine control: 4.2 ± 1.3; supine L -NMMA: 3.4 ± 0.8; upright-seated control: 4.5 ± 0.8; upright-seated L -NMMA: 3.4 ± 0.8 ml min −1 mmHg −1 , P > 0.05). Increased FPP augmented the LVC peak in the young control condition only (P < 0.05). In the upright-seated posture, NOS inhibition attenuated the FPP-induced augmentation of rapid vasodilatation in the young (control: 1.25 ± 0.23; L -NMMA: 0.74 ± 0.11 ml min −1 mmHg −1 s −1 ; P < 0.05), but not the old (control: 0.37 ± 0.07; L -NMMA: 0.25 ± 0.07 ml ml min P > 0.05). These data reveal that greater FPP increases the role of NO in PLM-induced vasodilatation in the young, but not the old, due to reduced NO bioavailability with age. Therefore, PLM involving alterations in posture may be useful to determine changes in NO bioavailability with age.
251 ± 92 Δml/min; P = 0.59). Likewise, the magnitude of the reduction in the overall (i.e., area under the curve) PLM-induced LBF response to NOS inhibition was less in the old (LBF: -31 ± 18 ml) than the young (LBF: -129 ± 21 ml; P < 0.01). These findings suggest that the age-associated reduction in PLM-induced LBF in the elderly is primarily due to a reduced contribution to vasodilation from NO and therefore support the use of PLM as a novel approach to assess NO-mediated vascular function across the lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.