Withania frutescens L. is a wild perennial woody plant used by the local population for diverse therapeutic purposes. This work aims to study for the first time the potential inhibitory effect of this plant hydroethanolic extract on α-amylase and α-glucosidase activities using in vitro methods and its antidiabetic and antihyperglycemic activities using alloxan-induced diabetic mice as a model for experimental diabetes. Two doses were selected for the in vivo study (200 and 400 mg/kg) and glibenclamide, a well-known antidiabetic drug (positive control) in a subacute study (28 days) where the antihyperglycemic activity was also assessed over a period of 12 h on diabetic mice. The continuous treatment of diabetic mice with the extract of Withania frutescens for 4 weeks succeeded to slowly manage their high fasting blood glucose levels (after two weeks), while the antihyperglycemic test result revealed that the extract of this plant did not control hyperglycemia in the short term. No toxicity signs or death were noted for the groups treated with the plant extract, and it shows a protective effect on the liver and kidney. The in vitro assays demonstrated that the inhibition of alpha-amylase and alpha-glucosidase might be one of the mechanisms of action exhibited by the extract of this plant to control and prevent postprandial hyperglycemia. This work indicates that W. frutescens have an important long term antidiabetic effect that can be well established to treat diabetes.
This work was conducted to study the chemical composition, antioxidant, antibacterial, and antifungal activities of essential oil and hydrolat from Withania frutescens. The essential oil was extracted by hydrodistillation. The chemical characterization was performed using gas chromatography-mass spectrometry (GC/MS). The antioxidant activity was studied using four different assays (DPPH, TAC, FRAP, and β-carotene bleaching). The antibacterial activity test was carried out on multidrug-resistant bacteria including Gram-negative and Gram-positive strains. Antifungal activity was tested on Candida albicans and Saccharomyces cerevisiae. The yield of essential oil (EO) obtained by hydrodistillation of W. frutescens was 0.31% majorly composed of camphor, α-thujone, carvacrol, and thymol. Regarding the antioxidant activities, the concentration of the sample required to inhibit 50% of radicals (IC50) of EO and hydrolat were 14.031 ± 0.012 and 232.081 ± 3.047 µg/mL (DPPH), 4.618 ± 0.045 and 8.997 ± 0.147 µg/mL (FRAP), 0.091 ± 0.007 and 0.131 ± 0.004 mg AAE/mg (TAC), 74.141 ± 1.040% and 40.850 ± 0.083% (β-carotene), respectively. Concerning the antibacterial activity of essential oil and hydrolat, the minimum inhibitory concentration (MIC) values found were 0.006 ± 0.001 and 6.125 ± 0.541 µg/mL (Escherichia coli 57), 0.003 ± 0.001 and 6.125 ± 0.068 µg/mL (Klebsiella pneumoniae), 0.001 ± 0.0 and 6.125 ± 0.046 µg/mL (Pseudomonas aeruginosa) and 0.012 ± 0.003 and 6.125 ± 0.571 µg/mL (Staphylococcus aureus), respectively. MIC values of essential oil and hydrolat vs. both C. albicans and S. cerevisiae were lower than 1/20,480 µg/mL. Based on the findings obtained, essential oils of Withania frutescens can be used as promising natural agents to fight free radical damage and nosocomial antibiotic-resistant microbes.
In this work, two varieties of Anacyclus pyrethrum (L.) including Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire were evaluated for their mineral and chemical compositions, total phenolic and flavonoid contents, and antimicrobial and antioxidant activities using hydroalcoholic extracts from their different parts (leaves, capitula, roots, and seeds). The phytochemical and mineral compositions were carried out using standard methods. The antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis 3-ethylbenzothiazolin-6-sulfonic acid), and FRAP (ferric reducing antioxidant power) tests. The antimicrobial activity was assayed using the agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods. The results of the chemical analysis showed that both varieties contained interesting mineral and chemical compositions with potentially active compounds; among them, N-isobutyl-2,4-heptadiene-6-monoynamide and cinnamic acid were detected in the Anacyclus pyrethrum var. pyrethrum (L.) only while thiadiazolo [5,4-d] pyrimidin-7-amine and N-isobutyl-2,4-undecadiene-8,10-diynamide compounds were limited to the Anacyclus pyrethrum var. depressus (Ball) Maire. In vitro antioxidant and antimicrobial activities of the two varieties demonstrated that the different parts had prominent antioxidant and antimicrobial properties. The principal component analysis (PCA) showed great similarity in the activity of the leaves, capitula, and seeds of both plants and a high difference in roots. Anacyclus pyrethrum var. pyrethrum roots were characterized by a high content in phenols and flavonoids and better antibacterial activities compared to Anacyclus pyrethrum var. depressus (Ball) Maire roots, which were characterized by better antioxidant activities. From this study, it can be concluded that the two varieties of Anacyclus pyrethrum (L.) showed promising mineral and chemical compositions with antioxidant and antimicrobial properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.