Purpose:To compare the classification of breast density with two automated methods, Volpara (version 1.5.0; Matakina Technology, Wellington, New Zealand) and Quantra (version 2.0; Hologic, Bedford, Mass), with clinical Breast Imaging Reporting and Data System (BI-RADS) density classifications and to examine associations of these measures with breast cancer risk. Materials andMethods:In this study, 1911 patients with breast cancer and 4170 control subjects matched for age, race, examination date, and mammography machine were evaluated. Participants underwent mammography at Mayo Clinic or one of four sites within the San Francisco Mammography Registry between 2006 and 2012 and provided informed consent or a waiver for research, in compliance with HIPAA regulations and institutional review board approval. Digital mammograms were retrieved a mean of 2.1 years (range, 6 months to 6 years) before cancer diagnosis, with the corresponding clinical BI-RADS density classifications, and Volpara and Quantra density estimates were generated. Agreement was assessed with weighted k statistics among control subjects. Breast cancer associations were evaluated with conditional logistic regression, adjusted for age and body mass index. Odds ratios, C statistics, and 95% confidence intervals (CIs) were estimated. Results:Agreement between clinical BI-RADS density classifications and Volpara and Quantra BI-RADS estimates was moderate, with k values of 0.57 (95% CI: 0.55, 0.59) and 0.46 (95% CI: 0.44, 0.47), respectively. Differences of up to 14% in dense tissue classification were found, with Volpara classifying 51% of women as having dense breasts, Quantra classifying 37%, and clinical BI-RADS assessment used to classify 43%. Clinical and automated measures showed similar breast cancer associations; odds ratios for extremely dense breasts versus scattered fibroglandular densities were 1.8 (95% CI: 1.5, 2.2), 1.9 (95% CI: 1.5, 2.5), and 2.3 (95% CI: 1.9, 2.8) for Volpara, Quantra, and BI-RADS classifications, respectively. Clinical BI-RADS assessment showed better discrimination of case status (C = 0.60; 95% CI: 0.58, 0.61) than did Volpara (C = 0.58; 95% CI: 0.56, 0.59) and Quantra (C = 0.56; 95% CI: 0.54, 0.58) BI-RADS classifications. Conclusion:Automated and clinical assessments of breast density are similarly associated with breast cancer risk but differ up to 14% in the classification of women with dense breasts. This could have substantial effects on clinical practice patterns.q RSNA, 2015
Elevated mammographic density (MD) is an established breast cancer risk factor. Reduced involution of terminal duct lobular units (TDLUs), the histologic source of most breast cancers, has been associated with higher MD and breast cancer risk. We investigated relationships of TDLU involution with area and volumetric MD, measured throughout the breast and surrounding biopsy targets (peri-lesional). Three measures inversely related to TDLU involution (TDLU count/mm2, median TDLU span, median acini count/TDLU) assessed in benign diagnostic biopsies from 348 women, ages 40–65, were related to MD area (quantified with thresholding software) and volume (assessed with a density phantom) by analysis of covariance, stratified by menopausal status and adjusted for confounders. Among premenopausal women, TDLU count was directly associated with percent peri-lesional MD (P-trend=0.03), but not with absolute dense area/volume. Greater TDLU span was associated with elevated percent dense area/volume (P-trend<0.05) and absolute peri-lesional MD (P=0.003). Acini count was directly associated with absolute peri-lesional MD (P=0.02). Greater TDLU involution (all metrics) was associated with increased nondense area/volume (P-trend≤0.04). Among postmenopausal women, TDLU measures were not significantly associated with MD. Among premenopausal women, reduced TDLU involution was associated with higher area and volumetric MD, particularly in peri-lesional parenchyma. Data indicating that TDLU involution and MD are correlated markers of breast cancer risk suggest that associations of MD with breast cancer may partly reflect amounts of at-risk epithelium. If confirmed, these results could suggest a prevention paradigm based on enhancing TDLU involution and monitoring efficacy by assessing MD reduction.
Background: Mammographic density (MD), the area of non-fatty-appearing tissue divided by total breast area, is a strong breast cancer risk factor. Most MD analyses have used visual categorizations or computerassisted quantification, which ignore breast thickness. We explored MD volume and area, using a volumetric approach previously validated as predictive of breast cancer risk, in relation to risk factors among women undergoing breast biopsy.Methods: Among 413 primarily white women, ages 40 to 65 years, undergoing diagnostic breast biopsies between 2007 and 2010 at an academic facility in Vermont, MD volume (cm
BackgroundSeveral studies have shown that mammographic texture features are associated with breast cancer risk independent of the contribution of breast density. Thus, texture features may provide novel information for risk stratification. We examined the association of a set of established texture features with breast cancer risk by tumor type and estrogen receptor (ER) status, accounting for breast density.MethodsThis study combines five case–control studies including 1171 breast cancer cases and 1659 controls matched for age, date of mammogram, and study. Mammographic breast density and 46 breast texture features, including first- and second-order features, Fourier transform, and fractal dimension analysis, were evaluated from digitized film-screen mammograms. Logistic regression models evaluated each normalized feature with breast cancer after adjustment for age, body mass index, first-degree family history, percent density, and study.ResultsOf the mammographic features analyzed, fractal dimension and second-order statistics features were significantly associated (p < 0.05) with breast cancer. Fractal dimensions for the thresholds equal to 10% and 15% (FD_TH10 and FD_TH15) were associated with an increased risk of breast cancer while thresholds from 60% to 85% (FD_TH60 to FD_TH85) were associated with a decreased risk. Increasing the FD_TH75 and Energy feature values were associated with a decreased risk of breast cancer while increasing Entropy was associated with a decreased risk of breast cancer. For example, 1 standard deviation increase of FD_TH75 was associated with a 13% reduced risk of breast cancer (odds ratio = 0.87, 95% confidence interval 0.79–0.95). Overall, the direction of associations between features and ductal carcinoma in situ (DCIS) and invasive cancer, and estrogen receptor positive and negative cancer were similar.ConclusionMammographic features derived from film-screen mammograms are associated with breast cancer risk independent of percent mammographic density. Some texture features also demonstrated associations for specific tumor types. For future work, we plan to assess risk prediction combining mammographic density and features assessed on digital images.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0778-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.