As the two most representative operation modes in an optical imaging system, bright-field imaging and phase contrast imaging can extract different morphological information on an object. Developing a miniature and low-cost system capable of switching between these two imaging modes is thus very attractive for a number of applications, such as biomedical imaging. Here, we propose and demonstrate that a Fourier transform setup incorporating an all-dielectric metasurface can perform a two-dimensional spatial differentiation operation and thus achieve isotropic edge detection. In addition, the metasurface can provide two spin-dependent, uncorrelated phase profiles across the entire visible spectrum. Therefore, based on the spin-state of incident light, the system can be used for either diffraction-limited bright-field imaging or isotropic edge-enhanced phase contrast imaging. Combined with the advantages of planar architecture and ultrathin thickness of the metasurface, we envision this approach may open new vistas in the very interdisciplinary field of imaging and microscopy.
Shrinking conventional optical systems to chip-scale dimensions will benefit custom applications in imaging, displaying, sensing, spectroscopy, and metrology. Towards this goal, metasurfaces-planar arrays of subwavelength electromagnetic structures that collectively mimic the functionality of thicker conventional optical elements-have been exploited at frequencies ranging from the microwave range up to the visible range. Here, we demonstrate highperformance metasurface optical components that operate at ultraviolet wavelengths, including wavelengths down to the record-short deep ultraviolet range, and perform representative wavefront shaping functions, namely, highnumerical-aperture lensing, accelerating beam generation, and hologram projection. The constituent nanostructured elements of the metasurfaces are formed of hafnium oxide-a loss-less, high-refractive-index dielectric material deposited using low-temperature atomic layer deposition and patterned using high-aspect-ratio Damascene lithography. This study opens the way towards low-form factor, multifunctional ultraviolet nanophotonic platforms based on flat optical components, enabling diverse applications including lithography, imaging, spectroscopy, and quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.