Humans have made such dramatic and permanent changes to Earth's landscapes that much of it is now substantially and irreversibly altered from its preanthropogenic state. Remote islands, until recently isolated from humans, offer insights into how these landscapes evolved in response to human-induced perturbations. However, little is known about when and how remote systems were colonized because archaeological data and historical records are scarce and incomplete. Here, we use a multiproxy approach to reconstruct the initial colonization and subsequent environmental impacts on the Azores Archipelago. Our reconstructions provide unambiguous evidence for widespread human disturbance of this archipelago starting between 700-60+50 and 850-60+60 Common Era (CE), ca. 700 y earlier than historical records suggest the onset of Portuguese settlement of the islands. Settlement proceeded in three phases, during which human pressure on the terrestrial and aquatic ecosystems grew steadily (i.e., through livestock introductions, logging, and fire), resulting in irreversible changes. Our climate models suggest that the initial colonization at the end of the early Middle Ages (500 to 900 CE) occurred in conjunction with anomalous northeasterly winds and warmer Northern Hemisphere temperatures. These climate conditions likely inhibited exploration from southern Europe and facilitated human settlers from the northeast Atlantic. These results are consistent with recent archaeological and genetic data suggesting that the Norse were most likely the earliest settlers on the islands.
Analyses of lead isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of dated sediment cores from two coastal estuaries and two inland lakes chronicle the predominance of industrial lead emissions in Mexico over the past century. These isotopic ratios exhibit a shift in composition from the turn of the previous century (1900) that corresponds with measurable increases (from 2- to 10-fold) in lead concentrations in the cores above their baseline values (3-22 microg/g)--both changes are consistent with the development of Mexican lead production for export and the manufacture of tetraethyl lead additives for Mexican gasolines. While subsequent changes in lead concentrations in the cores correspond with calculated emissions from the combustion of leaded gasoline in Mexico, isotopic compositions of the cores remain relatively constant throughout most of the 1900s (e.g., 206Pb/207Pb = 1.200 +/- 0.003; 208Pb/207Pb = 2.463 +/- 0.004). That isotopic constancy is attributed to the widespread pollution from lead production in Mexico and the dispersion of some of that lead used as an additive in Mexican gasolines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.