Rhizospheric soil samples were taken from Puna native grasses along an altitudinal gradient. Biodiversity of arbuscular mycorrhizal fungi (AMF) and associated bacteria was analyzed considering altitude and grasses photosynthetic pathways (metabolic type C3, C4). Cultivation-dependent approaches were applied to obtain further information about the phylogeny of the dominating cultivable aerobic-heterotrophic bacteria communities present in rhizospheric soil samples. In average, the bacterial count ranged between 1.30 x 10(2) and 8.66 x 10(4) CFU g(-1) of dry weight of soil. Individual bacterial colonies of aerobic heterotrophic bacteria grown on R2A medium were morphologically grouped and identified as typical soil bacteria belonging to the genera Bacillus, Pseudomonas, and Arthrobacter. Ten AMF taxa were found: Acaulospora sp., A. laevis, A. spinosa, Gigaspora sp., Gi. ramisporophora, Glomus sp., Gl. aggregatum, Gl. ambisporum, Gl. sinuosum, and Scutellospora biornata. AMF diversity decreased with altitude.
The distribution pattern of C3 and C4 grasses was studied in eight sites located between 350 m and 2100 m along an altitudinal gradient in Central Argentina. Of 139 taxa fifty‐nine are C3 and eighty C4. Species of the C3 tribes (Stipeae, Poeae, Meliceae, Aveneae, Bromeae and Triticeae) and C3 Paniceae species increase in number at higher elevations; only one C3 species was found below 650 m. C4 Aristideae, Pappophoreae, Eragrostideae, Cynodonteae, Andropogoneae and Paniceae increase at lower altitudes. The floristic crossover point is at about 1500 m; the ground cover cross‐over point is at about 1000 m. Analysis of the relationships between % C4 species along the gradient and nine climatic and environmental variables showed the highest correlation with July mean temperature, but all temperature variables show highly significant correlations with % C4. Correlation with annual rainfall is lower but also significant. These results are consistent with previous research showing the relative importance of C4 grasses as temperature increases. C3 species make a high contribution to relative grass coverage below the C3/C4 floristic crossover point but are rare below 1000 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.