Bio-based compounds are a leading direction in the context of the increased demand for these materials due to the numerous advantages associated with their use over conventional materials, which hardly degrade in the environment. At the same time, the use of essential oils and their components is generated mainly by finding alternative solutions to antibiotics and synthetic preservatives due to their bioactive characteristics, but also to their synergistic capacity during the manifestation of different biological properties. The present study is devoted to poly(ethylene brassylate-co-squaric acid) (PEBSA), synthesis and its use for thymol encapsulation and antibacterial system formation. The synthesized copolymer, performed through ethylene brassylate macrolactone ring-opening and copolymerization with squaric acid, was physicochemical characterized. Its amphiphilic character allowed the entrapment of thymol (Ty), a natural monoterpenoid phenol found in oil of thyme, a compound with strong antiseptic properties. The copolymer chemical structure was confirmed by spectroscopic analyses. Thermal analysis evidenced a good thermal stability for the copolymer. Additionally, the antimicrobial activity of PEBSA_Ty complex was investigated against eight different reference strains namely: bacterial strains—Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterococcus faecalis ATCC 29212, Klebsiella pneumonie ATCC 10031 and Salmonella typhimurium ATCC 14028, yeast strains represented by Candida albicans ATCC10231 and Candida glabrata ATCC 2001, and the fungal strain Aspergillus brasiliensis ATCC9642.
Porphyrins are versatile structures capable of acting in multiple ways. A mixed substituted A3B porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by 1H- and 13C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.039–6.71 µM and a detection limit of 0.013 µM and, secondly, as corrosion inhibitors for carbon–steel (OL) in an acid medium giving a best performance of 88% in the case of coverings with Pt-porphyrin. Finally, the electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER) of the free-base and Pt-metalated A3B porphyrins was evaluated in strong alkaline and acidic electrolyte solutions. The best results were obtained for the electrode modified with the metalated porphyrin, drop-casted on a graphite substrate from an N,N-dimethylformamide solution. In the strong acidic medium, the electrode displayed an HER overpotential of 108 mV, at i = −10 mA/cm2 and a Tafel slope value of 205 mV/dec.
While plastics are regarded as the most resourceful materials nowadays, ranging from countless utilities including protective or decorating coatings, to adhesives, packaging materials, electronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their critical limitation is their advanced flammability, which in fire incidents can result in dramatic human fatalities and irreversible environmental damage. Herein, epoxy-based composites with improved flame-resistant characteristics have been prepared by incorporating two flame retardant additives into epoxy resin, namely 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR) and boric acid (H3BO3). The additional reaction of 9,10-dihydro-oxa-10-phosphophenanthrene-10-oxide (DOPO) to the carbonyl group of benzaldehyde yielded PFR, which was then used to prepare epoxy composites having a phosphorus content ranging from 1.5 to 4 wt%, while the boron content was 2 wt%. The structure, morphology, thermal stability and flammability of resulted epoxy composites were investigated by FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry (MCC). Thermogravimetric analysis indicated that the simultaneous incorporation of PFR and H3BO3 improved the thermal stability of the char residue at high temperatures. The surface morphology of the char residues, studied by SEM measurements, showed improved characteristics in the case of the samples containing both phosphorus and boron atoms. The MCC tests revealed a significant reduction in flammability as well as a significant decrease in heat release capacity for samples containing both PFR and H3BO3 compared to the neat epoxy thermoset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.