BackgroundWe are the first to evaluate the prevalence of renal artery stenosis (RAS) in consecutive patients with acute myocardial infarction (AMI) referred for primary percutaneous coronary intervention from a single tertiary center. As a novelty, we assessed hydration and metabolic status and measured arterial stiffness. We elaborated a predicting model for RAS in AMI.Methods and ResultsOne hundred and eighty‐one patients with AMI underwent concomitantly primary percutaneous coronary intervention and renal angiography. We obtained data on demographics, medical history, cardiovascular risk factors, echocardiography, Killip class, and blood tests. In the first 24 hours post–primary percutaneous coronary intervention, we assessed bioimpedance through Body Composition Monitoring® and arterial stiffness through pulsed‐wave velocity, SphygmoCor®. Significant RAS (>50% lumen narrowing, RAS+) was present in 16.6% patients. In the RAS+ group we recorded significantly higher stiffness, CRUSADE score and dehydration, and more women with higher prevalence of multivascular coronary artery disease and heart failure. In our multivariate models, variables independently associated with RAS+ were previous percutaneous coronary intervention, low estimated glomerular filtration rate, multivascular coronary artery disease, and total/extracellular body water. These models had good specificity and low sensitivity.ConclusionsWe observed that RAS+ AMI patients have a particular hydration, metabolic, and endothelial profile that could generate more future major adverse cardiac events. Hence, renal angiography in AMI should be considered in specific subsets of patients.Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT02388139.
The intricate relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the cardiovascular system is an extensively studied pandemic topic, as there is an ever-increasing amount of evidence that reports a high prevalence of acute cardiac injury in the context of viral infection. In patients with Coronavirus disease 2019, COVID-19, a significant increase in serum levels of cardiac troponin or other various biomarkers was observed, suggesting acute cardiac injury, thus predicting both a severe course of the disease and a poor outcome. Pathogenesis of acute cardiac injury is not yet completely elucidated, though several mechanisms are allegedly involved, such as a direct cardiomyocyte injury, oxygen supply-demand inequity caused by hypoxia, several active myocardial depressant factors during sepsis, and endothelial dysfunction due to the hyperinflammatory status. Moreover, the increased levels of plasma cytokines and catecholamines and a significantly enhanced prothrombotic environment may lead to the destabilization and rupture of atheroma plaques, subsequently triggering an acute coronary syndrome. In the present review, we focus on describing the epidemiology, pathogenesis, and role of biomarkers in the diagnosis and prognosis of patients with acute cardiac injury in the setting of the COVID-19 pandemic. We also explore some novel therapeutic strategies involving immunomodulatory therapy, as well as their role in preventing a severe form of the disease, with both the short-term outcome and the long-term cardiovascular sequelae being equally important in patients with SARS-CoV-2 induced acute cardiac injury.
Given the possible pathophysiological links between myocardial ischemia and SARS-CoV-2 infection, several studies have focused attention on acute coronary syndromes in order to improve patients’ morbidity and mortality. Understanding the pathophysiological aspects of myocardial ischemia in patients infected with SARS-CoV-2 can open a broad perspective on the proper management for each patient. The electrocardiogram (ECG) remains the easiest assessment of cardiac involvement in COVID-19 patients, due to its non-invasive profile, accessibility, low cost, and lack of radiation. The ECG changes provide insight into the patient’s prognosis, indicating either the worsening of an underlying cardiac illnesses or the acute direct injury by the virus. This indicates that the ECG is an important prognostic tool that can affect the outcome of COVID-19 patients, which important to correlate its aspects with the clinical characteristics and patient’s medical history. The ECG changes in myocardial ischemia include a broad spectrum in patients with COVID-19 with different cases reported of ST-segment elevation, ST-segment depression, and T wave inversion, which are associated with severe COVID-19 disease.
Implantable cardioverter defibrillators (ICDs) are the cornerstone of primary and secondary prevention of sudden cardiac death (SCD) all around the globe. In almost 40 years of technological advances and multiple clinical trials, there has been a continuous increase in the implantation rate. The purpose of this review is to highlight the grey areas related to actual ICD recommendations, focusing specifically on the primary prevention of SCD. We will discuss the still-existing controversies strongly reflected in the differences between the international guidelines regarding ICD indication class in non-ischemic cardiomyopathy, and also address the question of early implantation after myocardial infarction in the absence of clear protocols for patients at high risk of life-threatening arrhythmias. Correlating the insufficient data in the literature for 40-day waiting times with the increased risk of SCD in the first month after myocardial infarction, we review the pros and cons of early ICD implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.