The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.
Rare diseases, an emerging global public health priority, require an evidence-based estimate of the global point prevalence to inform public policy. We used the publicly available epidemiological data in the Orphanet database to calculate such a prevalence estimate. Overall, Orphanet contains information on 6172 unique rare diseases; 71.9% of which are genetic and 69.9% which are exclusively pediatric onset. Global point prevalence was calculated using rare disease prevalence data for predefined geographic regions from the 'Orphanet Epidemiological file' (http://www.orphadata.org/cgi-bin/epidemio.html). Of the 5304 diseases defined by point prevalence, 84.5% of those analysed have a point prevalence of <1/1 000 000. However 77.3-80.7% of the population burden of rare diseases is attributable to the 4.2% (n = 149) diseases in the most common prevalence range (1-5 per 10 000). Consequently national definitions of 'Rare Diseases' (ranging from prevalence of 5 to 80 per 100 000) represent a variable number of rare disease patients despite sharing the majority of rare disease in their scope. Our analysis yields a conservative, evidence-based estimate for the population prevalence of rare diseases of 3.5-5.9%, which equates to 263-446 million persons affected globally at any point in time. This figure is derived from data from 67.6% of the prevalent rare diseases; using the European definition of 5 per 10 000; and excluding rare cancers, infectious diseases, and poisonings. Future registry research and the implementation of rare disease codification in healthcare systems will further refine the estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.