The Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authorit
This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.
A search for neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM) decaying to tau-lepton pairs in pp collisions is performed, using events recorded by the CMS experiment at the LHC. The dataset corresponds to an integrated luminosity of 24.6 fb −1 , with 4.9 fb −1 at 7 TeV and 19.7 fb −1 at 8 TeV. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes the case where the Higgs boson is produced in association with a b-quark jet. No excess is observed in the tau-lepton-pair invariant mass spectrum. Exclusion limits are presented in the MSSM parameter space for different benchmark scenarios, m max h , m mod+ h , m mod− h , light-stop, lightstau, τ -phobic, and low-m H . Upper limits on the cross section times branching fraction for gluon fusion and b-quark associated Higgs boson production are also given. A Exclusion limits 23The CMS collaboration 37 IntroductionA broad variety of precision measurements have shown the overwhelming success of the standard model (SM) [1][2][3] of fundamental interactions, which includes an explanation for the origin of the mass of the weak force carriers, as well as for the quark and lepton masses. In the SM, this is achieved via the Brout-Englert-Higgs mechanism [4][5][6][7][8][9], which predicts the existence of a scalar boson, the Higgs boson. However, the Higgs boson mass in the SM is not protected against quadratically divergent quantum-loop corrections at high energy, known as the hierarchy problem. In the model of supersymmetry (SUSY) [10,11], which postulates a symmetry between the fundamental bosons and fermions, a cancellation of these divergences occurs naturally. The Higgs sector of the minimal supersymmetric extension of the standard model (MSSM) [12,13] The dominant neutral MSSM Higgs boson production mechanism is the gluon fusion process for small and moderate values of tan β. At large values of tan β b-quark associated production is the dominant contribution, due to the enhanced Higgs boson Yukawa coupling to b quarks. Figure 1 shows the leading-order diagrams for the gluon fusion and b-quark associated Higgs boson production, in the four-flavor and in the five-flavor scheme. In the region of large tan β the branching fraction to tau leptons is also enhanced, making the search for neutral MSSM Higgs bosons in the τ τ final state particularly interesting. This paper reports a search for neutral MSSM Higgs bosons in pp collisions at √ s = 7 TeV and 8 TeV in the τ τ decay channel. The data were recorded with the CMS detector [14] at the CERN LHC and correspond to an integrated luminosity of 24.6 fb −1 , with 4.9 fb −1 at 7 TeV and 19.7 fb −1 at 8 TeV. Five different τ τ signatures are studied, eτ h , µτ h , eµ, µµ, and τ h τ h , where τ h denotes a hadronically decaying τ . These results are an extension of previous searches by the The results are interpreted in the context of the MSSM with different benchmark scenarios described in section 1.1 and also in a model independent way, in terms of upper...
The results of comprehensive studies of missing transverse energy as measured by the CMS detector in pp collisions at a centre-of-mass energy of 7 TeV are presented. Three missing transverse energy reconstruction algorithms are deployed for various physics analyses. The scale and resolution for missing transverse energy are validated using vector boson and dijet events, and severe mismeasurements due to the detector are studied. We also parametrize the effects of multiple pp interactions within the same bunch crossings on the scale and resolution. A tool, called missing transverse energy significance, based on particle resolutions in each event is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.