Understanding the influence of land use/land cover (LULC) on water quality is pertinent to sustainable water management. This study aimed at assessing the spatio-seasonal variation of water quality in relation to land use types in Lake Muhazi, Rwanda. The National Sanitation Foundation Water Quality Index (NSF-WQI) was used to evaluate the anthropogenically-induced water quality changes. In addition to Principal Components Analysis (PCA), a Cluster Analysis (CA) was applied on 12-clustered sampling sites and the obtained NSF-WQI. Lastly, the Partial Least Squares Path Modelling (PLS-PM) was used to estimate the nexus between LULC, water quality parameters, and the obtained NSF-WQI. The results revealed a poor water quality status at the Mugorore and Butimba sites in the rainy season, then at Mugorore and Bwimiyange sites in the dry season. Furthermore, PCA displayed a sample dispersion based on seasonality while NSF-WQI’s CA hierarchy grouped the samples corresponding to LULC types. Finally, the PLS-PM returned a strong positive correlation (+ 0.831) between LULCs and water quality parameters in the rainy season but a negative correlation coefficient (− 0.542) in the dry season, with great influences of cropland on the water quality parameters. Overall, this study concludes that the lake is seasonally influenced by anthropogenic activities, suggesting sustainable land-use management decisions, such as the establishment and safeguarding protection belts in the lake vicinity.
Vegetation is vital, and its greening depends on access to water. Thus, precipitation has a considerable influence on the health and condition of vegetation and its amount and timing depend on the climatic zone. Therefore, it is extremely important to monitor the state of vegetation according to the movements of precipitation in climatic zones. Although a lot of research has been conducted, most of it has not paid much attention to climatic zones in the study of plant health and precipitation. Thus, this paper aims to study the plant health in five African climatic zones. The linear regression model, the persistence index (PI), and the Pearson correlation coefficients were applied for the third generation Normalized Difference Vegetation Index (NDVI3g), with Climate Hazard Group infrared precipitation and Climate Change Initiative Land Cover for 34 years (1982 to 2015). This involves identifying plants in danger of extinction or in dramatic decline and the relationship between vegetation and rainfall by climate zone. The forest type classified as tree cover, broadleaved, deciduous, closed to open (>15%) has been degraded to 74% of its initial total area. The results also revealed that, during the study period, the vegetation of the tropical, polar, and warm temperate zones showed a higher rate of strong improvement. Although arid and boreal zones show a low rate of strong improvement, they are those that experience a low percentage of strong degradation. The continental vegetation is drastically decreasing, especially forests, and in areas with low vegetation, compared to more vegetated areas, there is more emphasis on the conservation of existing plants. The variability in precipitation is excessively hard to tolerate for more types of vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.