Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in a variety of tissues during ageing in humans, monkeys and rodents. These mutations are unevenly distributed and can accumulate clonally in certain cells, causing a mosaic pattern of respiratory chain deficiency in tissues such as heart, skeletal muscle and brain. In terms of the ageing process, their possible causative effects have been intensely debated because of their low abundance and purely correlative connection with ageing. We have now addressed this question experimentally by creating homozygous knock-in mice that express a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase. Here we show that the knock-in mice develop an mtDNA mutator phenotype with a threefold to fivefold increase in the levels of point mutations, as well as increased amounts of deleted mtDNA. This increase in somatic mtDNA mutations is associated with reduced lifespan and premature onset of ageing-related phenotypes such as weight loss, reduced subcutaneous fat, alopecia (hair loss), kyphosis (curvature of the spine), osteoporosis, anaemia, reduced fertility and heart enlargement. Our results thus provide a causative link between mtDNA mutations and ageing phenotypes in mammals.
The regulation of mitochondrial DNA (mtDNA) expression is crucial for mitochondrial biogenesis during development and differentiation. We have disrupted the mouse gene for mitochondrial transcription factor A (Tfam; formerly known as m-mtTFA) by gene targetting of loxP-sites followed by cre-mediated excision in vivo. Heterozygous knockout mice exhibit reduced mtDNA copy number and respiratory chain deficiency in heart. Homozygous knockout embryos exhibit a severe mtDNA depletion with abolished oxidative phosphorylation. Mutant embryos proceed through implantation and gastrulation, but die prior to embryonic day (E)10.5. Thus, Tfam is the first mammalian protein demonstrated to regulate mtDNA copy number in vivo and is essential for mitochondrial biogenesis and embryonic development.
Centronuclear myopathies are characterized by muscle weakness and abnormal centralization of nuclei in muscle fibers not secondary to regeneration. The severe neonatal X-linked form (myotubular myopathy) is due to mutations in the phosphoinositide phosphatase myotubularin (MTM1), whereas mutations in dynamin 2 (DNM2) have been found in some autosomal dominant cases. By direct sequencing of functional candidate genes, we identified homozygous mutations in amphiphysin 2 (BIN1) in three families with autosomal recessive inheritance. Two missense mutations affecting the BAR (Bin1/amphiphysin/RVS167) domain disrupt its membrane tubulation properties in transfected cells, and a partial truncation of the C-terminal SH3 domain abrogates the interaction with DNM2 and its recruitment to the membrane tubules. Our results suggest that mutations in BIN1 cause centronuclear myopathy by interfering with remodeling of T tubules and/or endocytic membranes, and that the functional interaction between BIN1 and DNM2 is necessary for normal muscle function and positioning of nuclei.
Mitochondrial dysfunction is an important contributor to human pathology and it is estimated that mutations of mitochondrial DNA (mtDNA) cause approximately 0.5-1% of all types of diabetes mellitus. We have generated a mouse model for mitochondrial diabetes by tissue-specific disruption of the nuclear gene encoding mitochondrial transcription factor A (Tfam, previously mtTFA; ref. 7) in pancreatic beta-cells. This transcriptional activator is imported to mitochondria, where it is essential for mtDNA expression and maintenance. The Tfam-mutant mice developed diabetes from the age of approximately 5 weeks and displayed severe mtDNA depletion, deficient oxidative phosphorylation and abnormal appearing mitochondria in islets at the ages of 7-9 weeks. We performed physiological studies of beta-cell stimulus-secretion coupling in islets isolated from 7-9-week-old mutant mice and found reduced hyperpolarization of the mitochondrial membrane potential, impaired Ca(2+)-signalling and lowered insulin release in response to glucose stimulation. We observed reduced beta-cell mass in older mutants. Our findings identify two phases in the pathogenesis of mitochondrial diabetes; mutant beta-cells initially display reduced stimulus-secretion coupling, later followed by beta-cell loss. This animal model reproduces the beta-cell pathology of human mitochondrial diabetes and provides genetic evidence for a critical role of the respiratory chain in insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.