Tin-halide perovskites have great potential as photovoltaic materials, but their performance is hampered by undesirable oxidation of Sn(II) to Sn(IV). In this work, we use nuclear magnetic resonance spectroscopy (NMR)...
Tin halide perovskites attract incremental attention to deliver lead‐free perovskite solar cells. Nevertheless, disordered crystal growth and low defect formation energy, related to Sn(II) oxidation to Sn(IV), limit the efficiency and stability of solar cells. Engineering the processing from perovskite precursor solution preparation to film crystallization is crucial to tackle these issues and enable the full photovoltaic potential of tin halide perovskites. Herein, the ionic liquid n‐butylammonium acetate (BAAc) is used to tune the tin coordination with specific O…Sn chelating bonds and NH…X hydrogen bonds. The coordination between BAAc and tin enables modulation of the crystallization of the perovskite in a thin film. The resulting BAAc‐containing perovskite films are more compact and have a preferential crystal orientation. Moreover, a lower amount of Sn(IV) and related chemical defects are found for the BAAc‐containing perovskites. Tin halide perovskite solar cells processed with BAAc show a power conversion efficiency of over 10%. This value is retained after storing the devices for over 1000 h in nitrogen. This work paves the way toward a more controlled tin‐based perovskite crystallization for stable and efficient lead‐free perovskite photovoltaics.
Tin
is one of the most promising alternatives to lead to make lead-free
halide perovskites for optoelectronics. However, the stability of
tin-based perovskites is hindered by the oxidation of Sn(II) to Sn(IV).
Recent works established that dimethyl sulfoxide, which is one of
the best-performing solvents for processing perovskite, is the primary
source of tin oxidation. The quest for a stable solvent could be a
game-changer in the stability of tin-based perovskites. Starting from
a database of over 2000 solvents, we identified a series of 12 new
solvents suitable for the processing of formamidinium tin iodide perovskite
(FASnI3) by investigating (1) the solubility of the precursor chemicals
FAI and SnI2, (2) the thermal stability of the precursor
solution, and (3) the possibility of forming perovskite. Finally,
we demonstrate a new solvent system to produce solar cells outperforming
those based on DMSO. Our work provides guidelines for further identification
of new solvents or solvent mixtures for preparing stable tin-based
perovskites.
Various aldehyde-containing photoswitches have been developed whose reactivity toward amines can be controlled externally. A thermally stable bifunctional diarylethene, which in its ring-closed form exhibits imine formation accelerated by one order of magnitude, was used as a photoswitchable crosslinker and mixed with a commercially available amino-functionalized polysiloxane to yield a rubbery material with viscoelastic and self-healing properties that can be reversibly tuned by irradiation.
Tin is the frontrunner for substituting toxic lead in perovskite solar cells. However, tin suffers the detrimental oxidation of SnII to SnIV. Most of reported strategies employ SnF2 in the perovskite precursor solution to prevent SnIV formation. Nevertheless, the working mechanism of this additive remains debated. To further elucidate it, we investigate the fluoride chemistry in tin halide perovskites by complementary analytical tools. NMR analysis of the precursor solution discloses a strong preferential affinity of fluoride anions for SnIV over SnII, selectively complexing it as SnF4. Hard X‐ray photoelectron spectroscopy on films shows the lower tendency of SnF4 than SnI4 to get included in the perovskite structure, hence preventing the inclusion of SnIV in the film. Finally, small‐angle X‐ray scattering reveals the strong influence of fluoride on the colloidal chemistry of precursor dispersions, directly affecting perovskite crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.