Summary
Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.
In preparation of the paper, there were several errors in the figure labeling, which were regretfully missed in the preparation and proofreading of the manuscript and which the authors would like to correct. None of these changes affects the data or the conclusions of the paper.(1) The heading of Figure 2H should read ''Glucose Infusion Rate,'' not ''Insulin Infusion Rate.'' (2) In the corresponding text on page 431 (right column, paragraph 2, line 13), the units for glucose infusion rate should be ''mg/kg/min,'' not ''mg/dl.'' (3) Likewise, on the y axis in Figure 2I, the units for glucose should read ''mg/kg/min'' rather than ''mg/dl.'' (4) On the y axis in Figures 3C, 4F, 4G, 4H, and 5D, the parenthetical reference to ''ARNT/Actin'' carried over from previous figures should simply be deleted. The correct specific genes or proteins measured in each panel are already indicated. (5) In Figure 5A, the correct units are ''mM,'' not ''mM/l.
Glycemic control is improved more after gastric bypass surgery (GBP) than after equivalent diet-induced weight loss in patients with morbid obesity and type 2 diabetes mellitus. We applied metabolomic profiling to understand the mechanisms of this better metabolic response after GBP. Circulating amino acids (AAs) and acylcarnitines (ACs) were measured in plasma from fasted subjects by targeted tandem mass spectrometry before and after a matched 10-kilogram weight loss induced by GBP or diet. Total AAs and branched-chain AAs (BCAAs) decreased after GBP, but not after dietary intervention. Metabolites derived from BCAA oxidation also decreased only after GBP. Principal components (PC) analysis identified two major PCs, one composed almost exclusively of ACs (PC1) and another with BCAAs and their metabolites as major contributors (PC2). PC1 and PC2 were inversely correlated with pro-insulin concentrations, the C-peptide response to oral glucose, and the insulin sensitivity index after weight loss, whereas PC2 was uniquely correlated with levels of insulin resistance (HOMA-IR). These data suggest that the enhanced decrease in circulating AAs after GBP occurs by mechanisms other than weight loss and may contribute to the better improvement in glucose homeostasis observed with the surgical intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.