The emergence of drug resistance limits the efficacy of targeted therapies in human tumors. The prevalent view is that resistance is a fait accompli: when treatment is initiated, cancers already contain drug-resistant mutant cells. Bacteria exposed to antibiotics transiently increase their mutation rates (adaptive mutability), thus improving the likelihood of survival. We investigated whether human colorectal cancer (CRC) cells likewise exploit adaptive mutability to evade therapeutic pressure. We found that epidermal growth factor receptor (EGFR)/BRAF inhibition down-regulates mismatch repair (MMR) and homologous recombination DNA-repair genes and concomitantly up-regulates error-prone polymerases in drug-tolerant (persister) cells. MMR proteins were also down-regulated in patient-derived xenografts and tumor specimens during therapy. EGFR/BRAF inhibition induced DNA damage, increased mutability, and triggered microsatellite instability. Thus, like unicellular organisms, tumor cells evade therapeutic pressures by enhancing mutability.
Background
Immune-inflammatory biomarkers (IIBs) showed a prognostic relevance in patients with metastatic CRC (mCRC). We aimed at evaluating the prognostic power of a new comprehensive biomarker, the Pan-Immune-Inflammation Value (PIV), in patients with mCRC receiving first-line therapy.
Methods
In the present pooled-analysis, we included patients enrolled in the Valentino and TRIBE trials. PIV was calculated as: (neutrophil count × platelet count × monocyte count)/lymphocyte count. A cut-off was determined using the maximally selected rank statistics method. Generalised boosted regression (GBR), the Kaplan–Meier method and Cox hazards regression models were used for survival analyses.
Results
A total of 438 patients were included. Overall, 208 patients (47%) had a low-baseline PIV and 230 (53%) had a high-baseline PIV. Patients with high PIV experienced a worse PFS (HR, 1.66; 95% CI, 1.36–2.03, P < 0.001) and worse OS (HR, 2.01; 95% CI, 1.57–2.57; P < 0.001) compared to patients with low PIV. PIV outperformed the other IIBs in the GBR model and in the multivariable models.
Conclusion
PIV is a strong predictor of survival outcomes with better performance than other well-known IIBs in patients with mCRC treated with first-line therapy. PIV should be prospectively validated to better stratify mCRC patients undergoing first-line therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.