We sought to investigate how peripheral blood and tumorinfiltrating NK cells differ in patients with breast cancer and sarcoma, and if tumor-infiltrating NK cells develop immunoregulatory functions. Compared with peripheral blood NK cells, tumorinfiltrating NK cells undergo phenotypic changes and acquire the expression of several immune checkpoint receptors. The expression of these immune checkpoint molecules was significantly higher on NK cells expressing CD73. Mechanistically, NK cells and IL-10 (21, 22). More recently in the context of cancer, CD56 + CD3cells in patients with ovarian cancer suppressed the growth of T cells, as observed within an ex vivo expansion of tumor-infiltrating lymphocytes (TILs). Even though it was demonstrated that the suppression was mediated by NKp46 engagement, the underlying mechanisms of how NK cells suppress are still unclear (23). It is also still unclear how conventional NK cells can undergo a phenotypic switch to suppress other TIL populations and contribute to tumor immune escape.
Lymphocyte-based immunotherapy has emerged as a breakthrough in cancer therapy for both hematologic and solid malignancies. In a subpopulation of cancer patients, this powerful therapeutic modality converts malignancy to clinically manageable disease. However, the T cell- and chimeric antigen receptor T (CAR-T) cell-mediated antimetastatic activity, especially their impacts on microscopic metastatic lesions, has not yet been investigated. Here we report a living zebrafish model that allows us to visualize the metastatic cancer cell killing effect by tumor- infiltrating lymphocytes (TILs) and CAR-T cells in vivo at the single-cell level. In a freshly isolated primary human melanoma, specific TILs effectively eliminated metastatic cancer cells in the living body. This potent metastasis-eradicating effect was validated using a human lymphoma model with CAR-T cells. Furthermore, cancer-associated fibroblasts protected metastatic cancer cells from T cell-mediated killing. Our data provide an in vivo platform to validate antimetastatic effects by human T cell-mediated immunotherapy. This unique technology may serve as a precision medicine platform for assessing anticancer effects of cellular immunotherapy in vivo before administration to human cancer patients.
Natural killer (NK) cells, which are innate lymphocytes endowed with potent cytotoxic activity, have recently attracted attention as potential anticancer therapeutics. While NK cells mediate encouraging responses in patients with leukemia, the therapeutic effects of NK cell infusion in patients with solid tumors are limited. Preclinical and clinical data suggest that the efficacy of NK cell infusion against solid malignancies is hampered by several factors including inadequate tumor infiltration and persistence/activation in the tumor microenvironment (TME). A number of metabolic features of the TME including hypoxia as well as elevated levels of adenosine, reactive oxygen species, and prostaglandins negatively affect NK cell activity. Moreover, cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells actively suppress NK cell-dependent anticancer immunity. Here, we review the metabolic and cellular barriers that inhibit NK cells in solid neoplasms as we discuss potential strategies to circumvent such obstacles towards superior therapeutic activity.
Kynurenine pathway (KP) activation by the enzymatic activity of indoleamine 2,3-dioxygenase1 (IDO1) and kynurenine (KYN) production represents an attractive target for reducing tumour progression and improving anti-tumour immunity in multiple cancers. However, immunomodulatory properties of other KP metabolites such as 3-hydroxy kynurenine (3-HK) and kynurenic acid (KYNA) are poorly understood. The association of the kynurenine metabolic pathway with T-cell status in the tumour microenvironment were characterized, using gene expression data of 368 cutaneous skin melanoma (SKCM) patients from the TCGA cohort. Based on the identified correlations, we characterized the production of KYN, 3-HK, and KYNA in vitro using melanoma-derived cell lines and primary CD4+ CD25− T-cells. Activation of the CD4+ T-cells produced IFNγ, which yielded increased levels of KYN and KYNA. Concurrently, kynurenine 3-monooxygenase (KMO) expression and proliferation of CD4+ T-cells were reduced, whereas exhaustion markers such as PD-L1, AHR, FOXP3, and CTLA4 were increased. Additionally, an analysis of the correlation network reconstructed using TCGA-SKCM emphasized KMO and KYNU with high variability among BRAF wild-type compared with V600E, which underscored their role in distinct CD4+ T-cell behavior in tumour immunity. Our results suggest that, in addition to IDO1, there is an alternative immune regulatory mechanism associated with the lower KMO expression and the higher KYNA production, which contributes to dysfunctional effector CD4+ T-cell response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.