IMPORTANCE Current Parkinson disease (PD) measures are subjective, rater-dependent, and assessed in clinic. Smartphones can measure PD features, yet no smartphone-derived rating score exists to assess motor symptom severity in real-world settings.OBJECTIVES To develop an objective measure of PD severity and test construct validity by evaluating the ability of the measure to capture intraday symptom fluctuations, correlate with current standard PD outcome measures, and respond to dopaminergic therapy. DESIGN, SETTING, AND PARTICIPANTSThis observational study assessed individuals with PD who remotely completed 5 tasks (voice, finger tapping, gait, balance, and reaction time) on the smartphone application. We used a novel machine-learning-based approach to generate a mobile Parkinson disease score (mPDS) that objectively weighs features derived from each smartphone activity (eg, stride length from the gait activity) and is scaled from 0 to 100 (where higher scores indicate greater severity). Individuals with and without PD additionally completed standard in-person assessments of PD with smartphone assessments during a period of 6 months. MAIN OUTCOMES AND MEASURESAbility of the mPDS to detect intraday symptom fluctuations, the correlation between the mPDS and standard measures, and the ability of the mPDS to respond to dopaminergic medication. RESULTSThe mPDS was derived from 6148 smartphone activity assessments from 129 individuals (mean [SD] age, 58.7 [8.6] years; 56 [43.4%] women). Gait features contributed most to the total mPDS (33.4%). In addition, 23 individuals with PD (mean [SD] age, 64.6 [11.5] years; 11 [48%] women) and 17 without PD (mean [SD] age 54.2 [16.5] years; 12 [71%] women) completed in-clinic assessments. The mPDS detected symptom fluctuations with a mean (SD) intraday change of 13.9 (10.3) points on a scale of 0 to 100. The measure correlated well with the Movement Disorder Society Unified Parkinson Disease's Rating Scale total (r = 0.81; P < .001) and part III only (r = 0.88; P < .001), the Timed Up and Go assessment (r = 0.72; P = .002), and the Hoehn and Yahr stage (r = 0.91; P < .001). The mPDS improved by a mean (SD) of 16.3 (5.6) points in response to dopaminergic therapy. CONCLUSIONS AND RELEVANCEUsing a novel machine-learning approach, we created and demonstrated construct validity of an objective PD severity score derived from smartphone assessments. This score complements standard PD measures by providing frequent, objective, real-world assessments that could enhance clinical care and evaluation of novel therapeutics.
In healthcare, there is a strong need to collect physiological data and sensor networking; this paper reviews recent studies and points to the need for future research.By JeongGil Ko, Chenyang Lu, Mani B. Srivastava, John A. Stankovic, Fellow IEEE, Andreas Terzis, and Matt Welsh ABSTRACT | Driven by the confluence between the need to collect data about people's physical, physiological, psychological, cognitive, and behavioral processes in spaces ranging from personal to urban and the recent availability of the technologies that enable this data collection, wireless sensor networks for healthcare have emerged in the recent years. In this review, we present some representative applications in the healthcare domain and describe the challenges they introduce to wireless sensor networks due to the required level of trustworthiness and the need to ensure the privacy and security of medical data. These challenges are exacerbated by the resource scarcity that is inherent with wireless sensor network platforms. We outline prototype systems spanning application domains from physiological and activity monitoring to large-scale physiological and behavioral studies and emphasize ongoing research challenges.
The academic community has long acknowledged the existence of malicious botnets, however to date, very little is known about the behavior of these distributed computing platforms. To the best of our knowledge, botnet behavior has never been methodically studied, botnet prevalence on the Internet is mostly a mystery, and the botnet life cycle has yet to be modeled. Uncertainty abounds. In this paper, we attempt to clear the fog surrounding botnets by constructing a multifaceted and distributed measurement infrastructure. Throughout a period of more than three months, we used this infrastructure to track 192 unique IRC botnets of size ranging from a few hundred to several thousand infected end-hosts. Our results show that botnets represent a major contributor to unwanted Internet traffic-27% of all malicious connection attempts observed from our distributed darknet can be directly attributed to botnetrelated spreading activity. Furthermore, we discovered evidence of botnet infections in 11% of the 800,000 DNS domains we examined, indicating a high diversity among botnet victims. Taken as a whole, these results not only highlight the prominence of botnets, but also provide deep insights that may facilitate further research to curtail this phenomenon.
Frequency overlap across wireless networks with different radio technologies can cause severe interference and reduce communication reliability. The circumstances are particularly unfavorable for ZigBee networks that share the 2.4 GHz ISM band with WiFi senders capable of 10 to 100 times higher transmission power. Our work first examines the interference patterns between ZigBee and WiFi networks at the bit-level granularity. Under certain conditions, ZigBee activities can trigger a nearby WiFi transmitter to back off, in which case the header is often the only part of the ZigBee packet being corrupted. We call this the symmetric interference regions, in comparison to the asymmetric regions where the ZigBee signal is too weak to be detected by WiFi senders, but WiFi activity can uniformly corrupt any bit in a ZigBee packet. With these observations, we design BuzzBuzz to mitigate WiFi interference through header and payload redundancy. Multi-Headers provides header redundancy giving ZigBee nodes multiple opportunities to detect incoming packets. Then, TinyRS, a full-featured Reed Solomon library for resource-constrained devices, helps decoding polluted packet payload. On a medium-sized testbed, BuzzBuzz improves the ZigBee network delivery rate by 70%. Furthermore, BuzzBuzz reduces ZigBee retransmissions by a factor of three, which increases the WiFi throughput by 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.