Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca signaling ([Ca]), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca] more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca] in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response.
Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors.
The present results provide a cellular and molecular basis to support the desmopressin stimulation test as a reliable, specific test for the diagnosis and postsurgery prognosis of CD. Furthermore, our data indicate that AVPR1b is responsible for the direct/exclusive desmopressin stimulatory pituitary effects observed in CD, thus opening the possibility of exploring AVPR1b antagonists as potential therapeutic tools for CD treatment.
These results constitute the first demonstration that ghrelin acts directly on corticotrope tumor cells derived from patients with Cushing's disease. The presence of ghrelin and GHS-R suggests that pituitary ghrelin may play an autocrine/paracrine role in regulating ACTH release in Cushing's disease. Our findings provide a plausible cellular basis for the exaggerated ACTH response to ghrelin in Cushing's disease and suggest novel research strategies to develop medical treatments for this disease.
Chimeric somatostatin/dopamine compounds such as BIM-23A760, an sst2/sst5/D2 receptors-agonist, have emerged as promising new approaches to treat pituitary adenomas. However, information on direct in vitro effects of BIM-23A760 in normal and tumoral pituitaries remains incomplete. The objective of this study was to analyze BIM-23A760 effects on functional parameters (Ca2+ signaling, hormone expression/secretion, cell viability and apoptosis) in pituitary adenomas (n = 74), and to compare with the responses of normal primate and human pituitaries (n = 3–5). Primate and human normal pituitaries exhibited similar sst2/sst5/D2 expression patterns, wherein BIM-23A760 inhibited the expression/secretion of several pituitary hormones (specially GH/PRL), which was accompanied by increased sst2/sst5/D2 expression in primates and decreased Ca2+ concentration in human cells. In tumoral pituitaries, BIM-23A760 also inhibited Ca2+ concentration, hormone secretion/expression and proliferation. However, BIM-23A760 elicited stimulatory effects in a subset of GHomas, ACTHomas and NFPAs in terms of Ca2+ signaling and/or hormone secretion, which was associated with the relative somatostatin/dopamine-receptors levels, especially sst5 and sst5TMD4. The chimeric sst2/sst5/D2 compound BIM-23A760 affects multiple, clinically relevant parameters on pituitary adenomas and may represent a valuable therapeutic tool. The relative ssts/D2 expression profile, particularly sst5 and/or sst5TMD4 levels, might represent useful molecular markers to predict the ultimate response of pituitary adenomas to BIM-23A760.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.