A new coronavirus known as SARS‐CoV‐2 emerged in Wuhan in 2019 and spread rapidly to the rest of the world causing the pandemic disease named coronavirus disease of 2019 (COVID‐19). Little information is known about the impact this virus can cause upon domestic and stray animals. The potential impact of SARS‐CoV‐2 has become of great interest in cats due to transmission among domestic cats and the severe phenotypes described recently in a domestic cat. In this context, there is a public health warning that needs to be investigated in relation with the epidemiological role of this virus in stray cats. Consequently, in order to know the impact of the possible transmission chain, blood samples were obtained from 114 stray cats in the city of Zaragoza (Spain) and tested for SARS‐CoV‐2 and other selected pathogens susceptible to immunosuppression including Toxoplasma gondii, Leishmania infantum, feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) from January to October 2020. Four cats (3.51%), based on enzyme‐linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike antigen, were seroreactive to SARS‐CoV‐2. T. gondii, L. infantum, FeLV and FIV seroprevalence was 12.28%, 16.67%, 4.39% and 19.30%, respectively. Among seropositive cats to SARS‐CoV‐2, three cats were also seropositive to other pathogens including antibodies detected against T. gondii and FIV (n = 1); T. gondii (n = 1); and FIV and L. infantum (n = 1). The subjects giving positive for SARS‐CoV‐2 were captured in urban areas of the city in different months: January 2020 (2/4), February 2020 (1/4) and July 2020 (1/4). This study revealed, for the first time, the exposure of stray cats to SARS‐CoV‐2 in Spain and the existence of concomitant infections with other pathogens including T. gondii, L. infantum and FIV, suggesting that immunosuppressed animals might be especially susceptible to SARS‐CoV‐2 infection.
Animal infections with SARS-CoV-2 have been reported in different countries and several animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally and by experimental infection. Moreover, infections under natural conditions in more than 20 mink farms have been reported where humans could have been the source of infection for minks. However, little information is available about the susceptibility of pet animals under natural conditions and currently there is no SARS-CoV-2 epidemiological assessment occurrence in household ferrets. In this study, the presence of SARS-CoV-2 antibodies was evaluated in serum samples obtained from 127 household ferrets (Mustela putorius furo) in the Province of Valencia (Spain). Two ferrets tested positive to SARS-CoV-2 (1.57%) by in-house enzyme-linked immunosorbent assay based on receptor binding domain (RBD) of Spike antigen. Furthermore, anti-RBD SARS-CoV-2 antibodies persisted at detectable levels in a seropositive SARS-CoV-2 domestic ferret beyond 129 days since the first time antibodies were detected. This study reports for the first time the evidence of household pet ferrets exposure to SARS-CoV-2 in Spain to date.
Background Feline leishmaniosis is a vector-borne parasitic disease caused by Leishmania spp. Leishmania infection in dogs is prevalent in the Mediterranean basin, but in other animals, such as cats, it could also play a role in the epidemiology of the disease. Information on the geographical distribution and epidemiological features of L. infantum infection in cats is scarce, particularly in urban stray cats living in regions where canine leishmaniosis is endemic. As diagnosis can be challenging, combining different serological and molecular methods is a useful approach. Our aim was to investigate the prevalence of infection of L. infantum in apparently healthy stray cats in an endemic region of Spain (Zaragoza city) using serological and molecular methods, and to compare the results of the different techniques. Methods The prevalence of Leishmania infection was studied in stray cats captured in urban and peri-urban areas of Zaragoza. Blood was collected from each animal for serology and molecular analysis. Three serological methods, namely the immunofluorescent antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA) and western blot (WB), were used to detect L. infantum antibodies and a real-time PCR (qPCR) assay was used to detect L. infantum DNA. The results were analyzed by Fisher’s exact test and Cohen’s kappa statistic (κ) to assess the level of agreement between the diagnostic techniques. Results Serological analysis of blood samples from 180 stray cats revealed 2.2% (4/179) Leishmania infection positivity by IFAT, 2.8% (5/179) by ELISA and 14.5% (26/179) by WB. Leishmania DNA was detected by qPCR in 5.6% (10/179) of the cats. Sixteen cats (8.9%) tested positive by only one serological technique and four tested positive by all three serological methods used. The overall rate of infected cats (calculated as the number of cats seropositive and/or qPCR positive) was 15.6%, and only two cats tested positive by all the diagnostic methods. A significant association was found between male cats and a positive qPCR result. Comparison of the techniques revealed a fair agreement in seropositivity between blood qPCR and IFAT (κ = 0.26), blood qPCR and ELISA (κ = 0.24), WB and ELISA (κ = 0.37) and WB and IFAT (κ = 0.40). The highest agreement between seropositive results was between IFAT and ELISA (κ = 0.89), and the lowest was between blood qPCR and WB (κ = 0.19). The prevalence of the feline leukemia virus antigen was 4.49% (8/178 cats) and that of the feline immunodeficiency virus (FIV) antibody was 6.74% (12/178), while co-infection with both retroviruses was observed in one female cat (1/178). Leishmania ELISA and IFAT seropositivity were statistically associated with FIV status by the chi-square test. Conclusions The results obtained in this study, using serological tests and qPCR, indicate the existence of L. infantum asymptomatic infection in apparently healthy stray cats in the city of Zaragoza, an endemic area in Spain.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.