Rare-earth elements (REEs) supply raw materials that constitute many of our modern critical infrastructure, defense, technology, and electrification needs. Despite REE accumulations occurring in conventional bedrock and ion-adsorption deposits sourced from weathering of igneous rocks, unconventional host materials such as coal and related sedimentary strata have been identified as promising sources of REEs to meet growing demand. To maximize the potential of unconventional resources such as REE-coal systems, new approaches are needed overcome challenges from mineral systems with no known deposits and areas with sparse geochemical data. This article presents a systematic knowledge-data resource assessment method for predicting and identifying REE resource potential and occurrence in these unconventional systems. The method utilizes a geologic and geospatial knowledge-data approach informed and guided by REE accumulation mechanisms to systematically assess and identify areas of higher enrichment. An assessment of the Powder River Basin is presented as a test case to demonstrate the method workflow and results. The key output is a potential enrichment score map reported with varying confidence levels based on the amount of supporting evidence. Results from the test case indicate several locations with promising potential for different types of coal-REE deposits, demonstrating the viability of the method for exploration and assessment of unconventional REE resources. The method is flexible by design and, with sufficient applicable knowledge and data, can be adapted for assessing critical mineral systems in other sedimentary systems as well.
A significant gap exists in our understanding and ability to predict the spatial occurrence and extent of rare earth elements (REE) and certain critical minerals (CM) in sedimentary strata. This is largely due to a lack of existing, systematic, and well-distributed REE and CM samples and analyses in United States sedimentary basins. In addition, the type of sampling and characterization performed to date has generally lacked the resolution and approach required to constrain geologic and geographic heterogeneities typical of subsurface, mineral resources. Here, we describe a robust and systematic method for collecting core scale characterization data that can be applied to studies on the contextual and spatial attributes, the geologic history, and lithostratigraphy of sedimentary basins. The methods were developed using drilled cores from coal bearing sedimentary strata in the Powder River Basin, Wyoming (PRB). The goal of this effort is to create a unified core characterization methodology to guide systematic collection of key data to achieve a foundation of spatially and geologically constrained REEs and CMs. This guidance covers a range of measurement types and methods that are each useful either individually or in combination to support characterization and delineation of REE and CM occurrences. The methods herein, whether used in part or in full, establish a framework to guide consistent acquisition of geological, geochemical, and geospatial datasets that are key to assessing and validating REE and CM occurrences from geologic sources to support future exploration, assessment, and techno-economic related models and analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.