Ataxia, causing imbalance, dizziness and falls, is a leading cause of neurological disability. We have recently identified a biallelic intronic AAGGG repeat expansion in replication factor complex subunit 1 (RFC1) as the cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and a major cause of late onset ataxia. Here we describe the full spectrum of the disease phenotype in our first 100 genetically confirmed carriers of biallelic repeat expansions in RFC1 and identify the sensory neuropathy as a common feature in all cases to date. All patients were Caucasian and half were sporadic. Patients typically reported progressive unsteadiness starting in the sixth decade. A dry spasmodic cough was also frequently associated and often preceded by decades the onset of walking difficulty. Sensory symptoms, oscillopsia, dysautonomia and dysarthria were also variably associated. The disease seems to follow a pattern of spatial progression from the early involvement of sensory neurons, to the later appearance of vestibular and cerebellar dysfunction. Half of the patients needed walking aids after 10 years of disease duration and a quarter were wheelchair dependent after 15 years. Overall, two-thirds of cases had full CANVAS. Sensory neuropathy was the only manifestation in 15 patients. Sixteen patients additionally showed cerebellar involvement, and six showed vestibular involvement. The disease is very likely to be underdiagnosed. Repeat expansion in RFC1 should be considered in all cases of sensory ataxic neuropathy, particularly, but not only, if cerebellar dysfunction, vestibular involvement and cough coexist.
Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG) exp ] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG) 11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.
T cell receptor (TCR) γδ-expressing T lymphocytes compose evolutionarily conserved cells with paradoxical features. On the one hand, clonally expanded γδ T cells with unique specificities typify adaptive immunity. Conversely, large TCRγδ+ intraepithelial lymphocyte (γδ IEL) compartments exhibit limited TCR diversity and effect rapid, innate-like tissue surveillance. The development of several γδ IEL compartments depends upon epithelial Btnl/BTNL (butyrophilin-like) genes, which are members of the B7-superfamily of T cell co-stimulators. Here we show that Btnl/BTNL responsiveness is mediated by germline-encoded motifs within the cognate TCRVγ chains of mouse and human γδ IEL. This contrasts with diverse antigen recognition by clonally-restricted complementarity-determining regions (CDRs) 1-3 of TCRγδ. Hence, TCRγδ intrinsically combines innate and adaptive immunity by utilizing spatially distinct regions to discriminate non-clonal agonist-selecting elements from clone-specific ligands. The broader implications for antigen receptor biology are considered.
The association of bilateral vestibulopathy with cerebellar ataxia was first reported in 1991 and delineated as a distinct syndrome with a characteristic and measurable clinical sign--an absent visually enhanced vestibulo-ocular reflex--in 2004. We reviewed 27 patients with this syndrome and show that a non-length-dependent sensory deficit with absent sensory nerve action potentials is an integral component of this syndrome, which we now call "cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome" (CANVAS). All patients had brain MRI and 22/27 had evidence of cerebellar atrophy involving anterior and dorsal vermis, as well as the hemispheric crus I. Brain and temporal bone pathology in one patient showed marked loss of Purkinje cells and of vestibular, trigeminal, and facial ganglion cells, but not of spiral ganglion cells. There are two sets of sibling pairs, suggesting CANVAS is a late-onset recessive disorder. The characteristic clinical sign-the visual vestibulo-ocular reflex deficit-can be demonstrated and measured clinically using video-oculography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.