Background To our knowledge, no publication providing overarching guidance on the conduct of systematic reviews of observational studies of etiology exists. Methods and findings Conducting Systematic Reviews and Meta-Analyses of Observational Studies of Etiology (COSMOS-E) provides guidance on all steps in systematic reviews of observational studies of etiology, from shaping the research question, defining exposure and outcomes, to assessing the risk of bias and statistical analysis. The writing group included researchers experienced in meta-analyses and observational studies of etiology. Standard peer-review was performed. While the structure of systematic reviews of observational studies on etiology may be similar to that for systematic reviews of randomised controlled trials, there are specific tasks within each component that differ. Examples include assessment for confounding, selection bias, and information bias. In systematic reviews of observational studies of etiology, combining studies in meta-analysis may lead to more precise estimates, but such greater precision does not automatically remedy potential bias. Thorough exploration of sources of heterogeneity is key when assessing the validity of estimates and causality. Conclusion As many reviews of observational studies on etiology are being performed, this document may provide researchers with guidance on how to conduct and analyse such reviews.
ObjectivesLatent class trajectory modelling (LCTM) is a relatively new methodology in epidemiology to describe life-course exposures, which simplifies heterogeneous populations into homogeneous patterns or classes. However, for a given dataset, it is possible to derive scores of different models based on number of classes, model structure and trajectory property. Here, we rationalise a systematic framework to derive a ‘core’ favoured model.MethodsWe developed an eight-step framework: step 1: a scoping model; step 2: refining the number of classes; step 3: refining model structure (from fixed-effects through to a flexible random-effect specification); step 4: model adequacy assessment; step 5: graphical presentations; step 6: use of additional discrimination tools (‘degree of separation’; Elsensohn’s envelope of residual plots); step 7: clinical characterisation and plausibility; and step 8: sensitivity analysis. We illustrated these steps using data from the NIH-AARP cohort of repeated determinations of body mass index (BMI) at baseline (mean age: 62.5 years), and BMI derived by weight recall at ages 18, 35 and 50 years.ResultsFrom 288 993 participants, we derived a five-class model for each gender (men: 177 455; women: 111 538). From seven model structures, the favoured model was a proportional random quadratic structure (model F). Favourable properties were also noted for the unrestricted random quadratic structure (model G). However, class proportions varied considerably by model structure—concordance between models F and G were moderate (Cohen κ: men, 0.57; women, 0.65) but poor with other models. Model adequacy assessments, evaluations using discrimination tools, clinical plausibility and sensitivity analyses supported our model selection.ConclusionWe propose a framework to construct and select a ‘core’ LCTM, which will facilitate generalisability of results in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.