for the Lancet NCDI Poverty Commission Study Group Executive summary"As we embark on this great collective journey, we pledge that no one will be left behind. Recognizing that the dignity of the human person is fundamental, we wish to see the goals and targets met for all nations and peoples and for all segments of society. And we will endeavour to reach the furthest behind first."Transforming our world: the 2030 agenda for sustainable development 1
Bukhman (2019) A comparison of all-cause and causespecific mortality by household socioeconomic status across seven INDEPTH network health and demographic surveillance systems in sub
Background The health of populations living in extreme poverty has been a long-standing focus of global development efforts, and continues to be a priority during the Sustainable Development Goal era. However, there has not been a systematic attempt to quantify the magnitude and causes of the burden in this specific population for almost two decades. We estimated disease rates by cause for the world’s poorest billion and compared these rates to those in high-income populations. Methods We defined the population in extreme poverty using a multidimensional poverty index. We used national-level disease burden estimates from the 2017 Global Burden of Disease Study and adjusted these to account for within-country variation in rates. To adjust for within-country variation, we looked to the relationship between rates of extreme poverty and disease rates across countries. In our main modeling approach, we used these relationships when there was consistency with expert opinion from a survey we conducted of disease experts regarding the associations between household poverty and the incidence and fatality of conditions. Otherwise, no within-country variation was assumed. We compared results across multiple approaches for estimating the burden in the poorest billion, including aggregating national-level burden from the countries with the highest poverty rates. We examined the composition of the estimated disease burden among the poorest billion and made comparisons with estimates for high-income countries. Results The composition of disease burden among the poorest billion, as measured by disability-adjusted life years (DALYs), was 65% communicable, maternal, neonatal, and nutritional (CMNN) diseases, 29% non-communicable diseases (NCDs), and 6% injuries. Age-standardized DALY rates from NCDs were 44% higher in the poorest billion (23,583 DALYs per 100,000) compared to high-income regions (16,344 DALYs per 100,000). Age-standardized DALY rates were 2,147% higher for CMNN conditions (32,334 DALYs per 100,000) and 86% higher for injuries (4,182 DALYs per 100,000) in the poorest billion, compared to high-income regions. Conclusion The disease burden among the poorest people globally compared to that in high income countries is highly influenced by demographics as well as large disparities in burden from many conditions. The comparisons show that the largest disparities remain in communicable, maternal, neonatal, and nutritional diseases, though NCDs and injuries are an important part of the “unfinished agenda” of poor health among those living in extreme poverty.
Considerable interest has been given to forming an international collaboration to develop a virtual moderate spatial resolution land observation constellation through aggregation of data sets from comparable national observatories such as the US Landsat, the Indian ResourceSat and related systems. This study explores the complementarity of India's ResourceSat-1 Advanced Wide Field Sensor (AWiFS) with the Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The analysis focuses on the comparative radiometry, geometry, and spectral properties of the two sensors. Two applied assessments of these data are also explored to examine the strengths and limitations of these alternate sources of moderate resolution land imagery with specific application domains. There are significant technical differences in these imaging systems including spectral band response, pixel dimensions, swath width, and radiometric resolution which produce differences in observation data sets. None of these differences was found to strongly limit comparable analyses in agricultural and forestry applications. Overall, we found that the AWiFS and Landsat TM/ETM+ imagery are comparable and in some ways complementary, particularly with respect to temporal repeat frequency. We have found that there are limits to our understanding of the AWiFS performance, for example, multi-camera design and stability of radiometric calibration over time, that leave some uncertainty that has been better addressed for Landsat through the Image Assessment System and related cross-sensor calibration studies. Such work still needs to be undertaken for AWiFS and similar observatories that may play roles in the Global Earth Observation System of Systems Land Surface Imaging Constellation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.