BackgroundEarly development of neurocognitive functions in infants can be compromised by poverty, malnutrition and lack of adequate stimulation. Optimal management of neurodevelopmental problems in infants requires assessment tools that can be used early in life, and are objective and applicable across economic, cultural and educational settings.Objective and designThe present study examined the feasibility of infrared eye tracking as a novel and highly automated technique for assessing visual-orienting and sequence-learning abilities as well as attention to facial expressions in young (9-month-old) infants. Techniques piloted in a high-resource laboratory setting in Finland (N=39) were subsequently field-tested in a community health centre in rural Malawi (N=40).ResultsParents' perception of the acceptability of the method (Finland 95%, Malawi 92%) and percentages of infants completing the whole eye-tracking test (Finland 95%, Malawi 90%) were high, and percentages of valid test trials (Finland 69–85%, Malawi 68–73%) satisfactory at both sites. Test completion rates were slightly higher for eye tracking (90%) than traditional observational tests (87%) in Malawi. The predicted response pattern indicative of specific cognitive function was replicated in Malawi, but Malawian infants exhibited lower response rates and slower processing speed across tasks.ConclusionsHigh test completion rates and the replication of the predicted test patterns in a novel environment in Malawi support the feasibility of eye tracking as a technique for assessing infant development in low-resource setting. Further research is needed to the test–retest stability and predictive validity of the eye-tracking scores in low-income settings.
Background: Positive effects of SQ-LNS on developmental outcomes have been found in some trials, but not others. Objectives: Our objectives were to generate pooled estimates of the effect of SQ-LNS, compared to control groups that received no intervention or an intervention without any nutritional supplement, on developmental outcomes and to identify study-level and individual-level modifiers of these effects. Methods: We conducted a two-stage meta-analysis of individual participant data from 14 intervention versus control group comparisons in 13 randomized trials of SQ-LNS provided to infants and young children age 6 to 24 months in 9 low- or middle-income countries (total n=30,024). Results: In 11-13 intervention versus control group comparisons (n=23,588-24,561), SQ-LNS increased mean language, social-emotional, and motor scores and reduced the prevalence of children in the lowest decile of these scores by 17%, 19%, and 16%, respectively. SQ-LNS also increased the prevalence of children walking without support at 12 months by 9%. Effects of SQ-LNS on language, social-emotional, and motor outcomes were larger among study populations with a higher burden (≥35%) of child stunting at 18 months than in populations with lower stunting burden. At the individual level, greater effects of SQ-LNS were found on language among children who were acutely malnourished at baseline; on language, motor, and executive function among children in households with lower socio-economic status; and on motor development among later-born children, children of older mothers, and children of mothers with lower education. Conclusions: SQ-LNS provided daily to children in the range of 6-24 months of age can be expected to result in modest, but potentially important, developmental gains, particularly in populations with high child stunting burden. Certain groups of children who experience higher risk environments, such as those from poor households or with poor baseline nutritional status, have greater potential to benefit from SQ-LNS in developmental outcomes.
Background Insulin-like growth factor I (IGF-I) is the most important hormonal promoter of linear growth in infants and young children. Objectives The objectives of this study were to compare plasma IGF-I concentration in a low- compared with a high-income country and characterize biological pathways leading to reduced IGF-I concentration in children in a low-income setting. Methods We analyzed plasma IGF-I concentration from 716 Malawian and 80 Finnish children at 6–36 mo of age. In the Malawian children, we studied the association between IGF-I concentration and their environmental exposures; nutritional status; systemic and intestinal inflammation; malaria parasitemia and viral, bacterial, and parasitic enteric infections; as well as growth at 18 mo of age. We then conducted a pathway analysis to identify direct and indirect associations between these predictors and IGF-I concentration. Results The mean IGF-I concentrations were similar in Malawi and Finland among 6-mo-old infants. At age 18 mo, the mean ± SD concentration was almost double among the Finns compared with the Malawians [24.2 ± 11.3 compared with 12.5 ± 7.7 ng/mL, age- and sex-adjusted difference in mean (95% CI): 11.8 (9.9, 13.7) ng/mL; P < 0.01]. Among 18-mo-old Malawians, plasma IGF-I concentration was inversely associated with systemic inflammation, malaria parasitemia, and intestinal Shigella, Campylobacter, and enterovirus infection and positively associated with the children's weight-for-length z score (WLZ), female sex, maternal height, mother's education, and dry season. Seasonally, mean plasma IGF-I concentration was highest in June and July and lowest in December and January, coinciding with changes in children's length gain and preceded by ∼2 mo by the changes in their WLZ. Conclusions The mean plasma IGF-I concentrations are similar in Malawi and Finland among 6-mo-old infants. Thereafter, mean concentrations rise markedly in Finland but not in Malawi. Systemic inflammation and clinically nonapparent infections are strongly associated with lower plasma IGF-I concentrations in Malawi through direct and indirect pathways.
Background Small-quantity (SQ) lipid-based nutrient supplements (LNSs) provide many nutrients needed for brain development. Objectives We aimed to generate pooled estimates of the effect of SQ-LNSs on developmental outcomes (language, social-emotional, motor, and executive function), and to identify study-level and individual-level modifiers of these effects. Methods We conducted a 2-stage meta-analysis of individual participant data from 14 intervention against control group comparisons in 13 randomized trials of SQ-LNSs provided to children age 6–24 mo (total n = 30,024). Results In 11–13 intervention against control group comparisons (n = 23,588–24,561), SQ-LNSs increased mean language (mean difference: 0.07 SD; 95% CI: 0.04, 0.10 SD), social-emotional (0.08; 0.05, 0.11 SD), and motor scores (0.08; 95% CI: 0.05, 0.11 SD) and reduced the prevalence of children in the lowest decile of these scores by 16% (prevalence ratio: 0.84; 95% CI: 0.76, 0.92), 19% (0.81; 95% CI: 0.74, 0.89), and 16% (0.84; 95% CI: 0.76, 0.92), respectively. SQ-LNSs also increased the prevalence of children walking without support at 12 mo by 9% (1.09; 95% CI: 1.05, 1.14). Effects of SQ-LNSs on language, social-emotional, and motor outcomes were larger among study populations with a higher stunting burden (≥35%) (mean difference: 0.11–0.13 SD; 8–9 comparisons). At the individual level, greater effects of SQ-LNSs were found on language among children who were acutely malnourished (mean difference: 0.31) at baseline; on language (0.12), motor (0.11), and executive function (0.06) among children in households with lower socioeconomic status; and on motor development among later-born children (0.11), children of older mothers (0.10), and children of mothers with lower education (0.11). Conclusions Child SQ-LNSs can be expected to result in modest developmental gains, which would be analogous to 1–1.5 IQ points on an IQ test, particularly in populations with a high child stunting burden. Certain groups of children who experience higher-risk environments have greater potential to benefit from SQ-LNSs in developmental outcomes. This trial was registered at www.crd.york.ac.uk/PROSPERO as CRD42020159971.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.