Proton MRS (1H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good‐quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi‐adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.
To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10−3 mm2 s−1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.
The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modality.The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types.The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with >80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.