The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status.
Illumina's Infinium HumanMethylation450 BeadChip arrays were used to examine genome-wide DNA methylation profiles in 22 sample pairs from colorectal cancer (CRC) and adjacent tissues and 19 colon tissue samples from cancer-free donors. We show that the methylation profiles of tumors and healthy tissue samples can be clearly distinguished from one another and that the main source of methylation variability is associated with disease status. We used different statistical approaches to evaluate the methylation data. In general, at the CpG-site level, we found that common CRC-specific methylation patterns consist of at least 15,667 CpG sites that were significantly different from either adjacent healthy tissue or tissue from cancer-free subjects. Of these sites, 10,342 were hypermethylated in CRC, and 5,325 were hypomethylated. Hypermethylated sites were common in the maximum number of sample pairs and were mostly located in CpG islands, where they were significantly enriched for differentially methylated regions known to be cancer-specific. In contrast, hypomethylated sites were mostly located in CpG shores and were generally sample-specific. Despite the considerable variability in methylation data, we selected a panel of 14 highly robust candidates showing methylation marks in genes SND1, ADHFE1, OPLAH, TLX2, C1orf70, ZFP64, NR5A2, and COL4A. This set was successfully cross-validated using methylation data from 209 CRC samples and 38 healthy tissue samples from The Cancer Genome Atlas consortium (AUC = 0.981 [95% CI: 0.9677-0.9939], sensitivity = 100% and specificity = 82%). In summary, this study reports a large number of loci with novel differential methylation statuses, some of which may serve as candidate markers for diagnostic purposes.
There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but also of compromised cardiac functions and cardiometabolic diseases.
The O antigen (O polysaccharide), composed of many oligosaccharide repeats (O units), is a part of the lipopolysaccharide (LPS) of Gram-negative bacteria and the most structurally variable cell surface constituent. The O-antigen diversity is due to variations of O-antigen biosynthesis genes and is believed to offer various bacterial clones selective advantages in their specific ecological niches (1). The O antigen plays important and various roles in bacteriophage interactions with the host. Many bacteriophages employ the O antigen as a primary receptor that ensures reversible adsorption to the host cell followed by irreversible adsorption to a secondary receptor, most frequently an outer membrane protein (2-4). O-antigen modifications may prevent bacteriophage binding. For instance, phage SPC35 uses the Salmonella O12 antigen receptor, and phase-variable glucosylation of the O antigen confers transient SPC35 resistance to the bacteria (5). A temperate podovirus, Sf6, also uses O antigen of its host, Shigella flexneri, as a primary receptor (4). Interestingly, the Sf6 genome harbors the oac gene for O-antigen acetylase that causes O-serotype conversion of Sf6 lysogens, which precludes bacteriophage Sf6 adsorption to these cells (6). On the other hand, the O-antigen-carrying LPS of E. coli is able to prevent the access of phages and colicins to their outer membrane protein receptors, which are otherwise sufficient for a successful attack of the cell (7). O-antigen deficiency also enhances the sensitivity of E. coli to Shiga toxin 2-converting bacteriophages (3,8). A phage T5 mutant lacking L-shaped tail fibers that recognize polymannose O antigens showed a reduced rate of adsorption to the O-antigen-producing hosts but infected O-antigen-less strains as efficiently as the wild-type phage (9, 10).These data indicate that the O-antigen layer represents an effective shield that nonspecifically protects the bacteria from interactions of bacteriophages with their cell surface receptors. In order to penetrate this shield, the phages need to acquire the proteins that specifically recognize the O antigen, thus becoming dependent on a given O-polysaccharide type. Many bacteriophages that use the O antigen as a primary receptor possess enzymes that degrade or modify it (11, 12).N4-like bacteriophage G7C and its host E. coli 4s were isolated from horse feces in the course of an investigation of coliphage ecology in the equine gut ecosystem (13). In addition to G7C, E. coli 4s was used as a host for the isolation and propagation of several other G7C-related phages (14; A. K. Golomidova, unpublished data). Currently, E. coli 4s remains the only known host for bacteriophage G7C, but despite the extremely narrow host range, G7C-related phages persisted in the same horse population for several years (14). The mechanisms that help G7C avoid extinction despite the small fraction of the total E. coli population that is suitable for its growth are poorly understood (9). Elucidation of the molecular details of the initial steps of th...
Skeletal muscle tissue demonstrates global hypermethylation with age. However, methylome changes across the time-course of differentiation in aged human muscle derived cells, and larger coverage arrays in aged muscle tissue have not been undertaken. Using 850K DNA methylation arrays we compared the methylomes of young (27 ± 4.4 years) and aged (83 ± 4 years) human skeletal muscle and that of young/aged heterogenous muscle-derived human primary cells (HDMCs) over several time points of differentiation (0, 72 h, 7, 10 days). Aged muscle tissue was hypermethylated compared with young tissue, enriched for; pathways-in-cancer (including; focal adhesion, MAPK signaling, PI3K-Akt-mTOR signaling, p53 signaling, Jak-STAT signaling, TGF-beta and notch signaling), rap1-signaling, axon-guidance and hippo-signalling. Aged cells also demonstrated a hypermethylated profile in pathways; axon-guidance, adherens-junction and calcium-signaling, particularly at later timepoints of myotube formation, corresponding with reduced morphological differentiation and reductions in MyoD/Myogenin gene expression compared with young cells. While young cells showed little alterations in DNA methylation during differentiation, aged cells demonstrated extensive and significantly altered DNA methylation, particularly at 7 days of differentiation and most notably in focal adhesion and PI3K-AKT signalling pathways. While the methylomes were vastly different between muscle tissue and HDMCs, we identified a small number of CpG sites showing a hypermethylated state with age, in both muscle tissue and cells on genes KIF15, DYRK2, FHL2, MRPS33, ABCA17P. Most notably, differential methylation analysis of chromosomal regions identified three locations containing enrichment of 6–8 CpGs in the HOX family of genes altered with age. With HOXD10, HOXD9, HOXD8, HOXA3, HOXC9, HOXB1, HOXB3, HOXC-AS2 and HOXC10 all hypermethylated in aged tissue. In aged cells the same HOX genes (and additionally HOXC-AS3) displayed the most variable methylation at 7 days of differentiation versus young cells, with HOXD8, HOXC9, HOXB1 and HOXC-AS3 hypermethylated and HOXC10 and HOXC-AS2 hypomethylated. We also determined that there was an inverse relationship between DNA methylation and gene expression for HOXB1, HOXA3 and HOXC-AS3. Finally, increased physical activity in young adults was associated with oppositely regulating HOXB1 and HOXA3 methylation compared with age. Overall, we demonstrate that a considerable number of HOX genes are differentially epigenetically regulated in aged human skeletal muscle and HDMCs and increased physical activity may help prevent age-related epigenetic changes in these HOX genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.