Several biomarkers are used in confirming the diagnosis of cognitive disorders. This study evaluates whether the level of these markers after heart surgery correlates with the development of cognitive dysfunction, which is a frequent complication of cardiac interventions. Concentrations of amyloid-β peptide, tau, and S100β in the cerebro-spinal fluid were assessed, as well as cognitive functions were evaluated before and after coronary artery bypass grafting, utilizing immuno-assays and psychometric tests, respectively. A drastic rise in the level of S100β was observed one week after the surgery, a mark of a severe generalized cerebral injury. The level of amyloid-β peptide significantly decreased, whereas the concentration of tau markedly increased six months postoperatively. Gradual cognitive decline was also present. These findings clearly demonstrate post-surgical cognitive impairment associated with changes in biomarkers similar to that seen in Alzheimer's disease, suggesting a unifying pathognomic factor between the two disorders. A holistic approach to coronary heart disease and Alzheimer's-type dementia is proposed.
Functionalized living cells are regarded as effective tools in directed cell delivery and tissue engineering. Here we report the facile functionalization of viable isolated HeLa cells with superparamagnetic cationic nanoparticles via a single-step biocompatible process. Nanoparticles are localized on the cellular membranes and do not penetrate into the cytoplasm. The magnetically responsive cells are viable and able to colonize and grow on substrates. Magnetically facilitated microorganization of functionalized cells into viable living clusters is demonstrated. We believe that the technique described here may find a number of potential applications in cell-based therapies and in development of whole-cell biosensors.
Naturally occurring extracellular vesicles (EVs) play essential roles in intracellular communication and delivery of bioactive molecules. Therefore it has been suggested that EVs could be used for delivery of therapeutics. However, to date the therapeutic application of EVs has been limited by number of factors, including limited yield and full understanding of their biological activities. To address these issues, we analyzed the morphology, molecular composition, fusion capacity and biological activity of Cytochalasin B-induced membrane vesicles (CIMVs). The size of these vesicles was comparable to that of naturally occurring EVs. In addition, we have shown that CIMVs from human SH-SY5Y cells contain elevated levels of VEGF as compared to the parental cells, and stimulate angiogenesis in vitro and in vivo.
Mesenchymal stem cells (MSCs) hold a great promise for cell therapy. To date, they represent one of the best choices for the treatment of post-traumatic injuries of the peripheral nervous system. Although autologous can be easily transplanted in the injured area, clinical advances in this filed have been impaired by lack of preservation of graft cells into the injury area after transplantation. Indeed, cell viability is not retained after injection into the blood stream, and cells injected directly into the area of injury either are washed off or inhibit regeneration through scar formation and neuroma development. This study proposes a new way of MSCs delivery to the area of traumatic injury by using fibrin glue, which not only fixes cells at the site of application but also provides extracellular matrix support. Using a sciatic nerve injury model, MSC derived from adipose tissue embedded in fibrin glue were able to enter the nerve and migrate mainly retrogradely after transplantation. They also demonstrated a neuroprotective effect on DRG L5 sensory neurons and stimulated axon growth and myelination. Post-traumatic changes of the sensory neuron phenotype were also improved. Importantly, MSCs stimulated nerve angiogenesis and motor function recovery. Therefore, our data suggest that MSC therapy using fibrin glue is a safe and efficient method of cell transplantation in cases of sciatic nerve injury, and that this method of delivery of regeneration stimulants could be beneficial for the successful treatment of other central and peripheral nervous system conditions.
Amyotrophic lateral sclerosis (ALS) is an incurable, chronic, fatal neuro-degenerative disease characterized by progressive loss of moto-neurons and paralysis of skeletal muscles. Reactivating dysfunctional areas is under earnest investigation utilizing various approaches. Here we present an innovative gene-cell construct aimed at reviving inert structure and function. Human umbilical cord blood cells (hUCBCs) transduced with adeno-viral vectors encoding human VEGF, GDNF and/or NCAM genes were transplanted into transgenic ALS mice models. Significant improvement in behavioral performance (open-field and grip-strength tests), as well as increased life-span was observed in rodents treated with NCAM-VEGF or NCAM-GDNF co-transfected cells. Active trans-gene expression was found in the spinal cord of ALS mice 10 weeks after delivering genetically modified hUCBCs, and cells were detectable even 5 months following transplantation. Our gene-cell therapy model yielded prominent symptomatic control and prolonged life-time in ALS. Incredible survivability of xeno-transpanted cells was also observed without any immune-suppression. These results suggest that engineered hUCBCs may offer effective gene-cell therapy in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.