The interaction between metal nanoparticles and bacteria belongs to the central issues in a dynamically growing bionanotechnological research. Herein, we investigated the adhesion efficiency of gold nanoparticles (30 nm) for various bacterial strains, both Gram-positive (Bacillus subtilis, Staphylococcus carnosus) and Gram-negative (Neisseria subflava, Stenotrophomonas maltophilia). The thorough microscopic (SEM/TEM) observations revealed that the nanoparticles do not penetrate into the bacterial cells but adhere to the walls. Large differences in the adhered nanoparticles amount were observed for the investigated strains (B. subtilis >> S. carnosus > N. subflava > S. maltophilia). A direct correlation between the number of the attached nanoparticles and the ζ-potential of the bacterial strains was found, and the results were rationalized in terms of the DLVO model. The calculated DLVO energy profiles revealed that the activation barriers for the adhesion process are rather small (1.45-1.55 kT), and the primary energy minima of 120-170 kT are favorable for the effective adsorption process. The established linear correlation between the nanoparticles adhered to the cell surface and the size of the critical volume around the bacterial cell, where the attraction forces dominate, implies that the observed dramatic differences in the attachment efficiency result from the availability of the nanoparticles in the critical volume of the surrounding suspensions. Owing to non-specific interactions governed by the ζ-potential mainly, the obtained results can be readily extended for the other bacteria-nanoparticle systems, providing a rational background for future advances in bacteria detection and thorough characterization via SERS method as well as for nanoparticles assemblies towards nanoelectronics.
In this paper we present a theoretical study of water sorption on cobalt spinel nanocrystals by means of plane-wave periodic density functional theory (DFT) calculations jointly with statistical thermodynamics. The three most stable (100), (110), and (111) planes exposed by Co 3 O 4 were considered, and their stabilization upon water adsorption is discussed in detail. The calculated changes in free enthalpy of the investigated system under different hydration conditions along with the Wulff construction were used to predict the rhombicuboctahedral equilibrium morphology of cobalt spinel nanocrystals in different conditions, which corresponds very well to the experimental transmission electron microscopic (TEM) images. Two-dimensional surface coverage versus temperature and pressure diagrams were constructed for each of the examined (100), (110), and (111) planes to illustrate water adsorption processes in a concise way.
Fundamental research on direct NO decomposition is still needed for the design of a sufficiently active, stable and selective catalyst. Co-based mixed oxides promoted by alkali metals are promising catalysts for direct NO decomposition, but which parameters play the key role in NO decomposition over mixed oxide catalysts? How do applied preparation conditions affect the obtained catalyst’s properties?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.