We examined two variants of the genome-sequenced strain, Campylobacter jejuni NCTC11168, which show marked differences in their virulence properties including colonization of poultry, invasion of Caco-2 cells, and motility. Transcript profiles obtained from whole genome DNA microarrays and proteome analyses demonstrated that these differences are reflected in late flagellar structural components and in virulence factors including those involved in flagellar glycosylation and cytolethal distending toxin production. We identified putative 28 and 54 promoters for many of the affected genes and found that greater differences in expression were observed for 28 -controlled genes. Inactivation of the gene encoding 28 , fliA, resulted in an unexpected increase in transcripts with 54 promoters, as well as decreased transcription of 28 -regulated genes. This was unlike the transcription profile observed for the attenuated C. jejuni variant, suggesting that the reduced virulence of this organism was not entirely due to impaired function of 28 . However, inactivation of flhA, an important component of the flagellar export apparatus, resulted in expression patterns similar to that of the attenuated variant. These findings indicate that the flagellar regulatory system plays an important role in campylobacter pathogenesis and that flhA is a key element involved in the coordinate regulation of late flagellar genes and of virulence factors in C. jejuni.
Genomic approaches can be exploited to expose the complexities and conservation of biological systems such as the immune network across various mammalian species. In this study, temporal transcriptional expression profiles were analyzed in human and bovine monocytic cells in response to the TLR-4 agonist, LPS, in the presence or absence of their respective host defense peptides. The cathelicidin peptides, human LL-37 and bovine myeloid antimicrobial peptide-27 (BMAP-27), are homologs, yet they have diverged notably in terms of sequence similarity. In spite of their low sequence similarities, both of these cathelicidin peptides demonstrated potent, antiendotoxin activity in monocytic cells at low, physiologically relevant concentrations. Microarray studies indicated that 10 ng/ml LPS led to the up-regulation of 125 genes in human monocytes, 106 of which were suppressed in the presence of 5 mug/ml of the human peptide LL-37. To confirm and extend these data, temporal transcriptional responses to LPS were assessed in the presence or absence of the species-specific host defense peptides by quantitative real-time PCR. The transcriptional trends of 20 LPS-induced genes were analyzed in bovine and human monocytic cells. These studies demonstrated conserved trends of gene responses in that both peptides were able to profoundly suppress many LPS-induced genes. Consistent with this, the human and bovine peptides suppressed LPS-induced translocation of NF-kappaB subunits p50 and p65 into the nucleus of monocytic cells. However, there were also distinct differences in responses to LPS and the peptides; for example, treatment with 5 mug/ml BMAP-27 alone tended to influence gene expression (RELA, TNF-alpha-induced protein 2, MAPK phosphatase 1/dual specificity phosphatase 1, IkappaBkappaB, NFkappaBIL1, TNF receptor-associated factor 2) to a greater extent than did the same amount of human LL-37. We hypothesize that the immunomodulatory effects of the species-specific host defense peptides play a critical role in regulating inflammation and represent an evolutionarily conserved mechanism for maintaining homeostasis, although the sequence divergence of these peptides is substantial.
Bovine rotavirus (BRV) and bovine coronavirus (BCV) are important causes of diarrhoea and death in newborn calves. Although these viruses belong to distinct viral classes, they both infect intestinal epithelial cells and induce similar clinical symptoms. Rotavirus usually causes an acute infection, but coronavirus infection can persist and reoccur in adults. Differences in viral structure and clinical outcome prompted us to postulate that innate mucosal immune responses would be markedly different following rotavirus and coronavirus infections. To address this hypothesis, gene expression following BRV and BCV infection was analysed in surgically prepared intestinal loops from 1-day-old colostrum-deprived calves. Gene expression was profiled at 18 h post-infection using bovine cDNA microarrays; the majority of differentially expressed significant genes were associated with the cell cycle and innate immune responses. A select group of these genes was validated by quantitative real-time PCR (qRT-PCR). The expression of genes associated with interferons (IFNs), cytokines and Toll-like receptors, which were not present on the microarray, was analysed further by qRT-PCR. Strong activation of TLR3, IL-6 and p65 was observed in BRV-infected host tissues, but not in tissues infected with BCV. Both viruses also downregulated IFN-and pro-inflammatory cytokine-associated pathways. In vitro studies confirmed that IFN inhibited viral replication. All of these results together suggested either that very early events of host responses at 18 h post-infection were being observed, or that both viruses have unique effective strategies to evade host immune responses. The present study used immunohistological and functional genomic approaches to investigate the effects of BRV and
Fatal bovine respiratory disease (BRD) is a major cause of financial losses in the cattle industry. A variety of stressors have been implicated as contributing to disease severity. However, it has proven difficult to determine the role these individual factors may play in the final outcome of this disease complex. The objective of the present investigation was to obtain proteomic, metabonomic, and elemental profiles of bovine serum samples from stressed and control animals before and after a primary viral infection to determine if these profiles could distinguish between responses to stressors and viral infection. Multivariate analysis revealed distinct differential trends in the distribution profile of proteins, metabolites, and elements following a stress response both before and after primary viral infection. A group of acute phase proteins, metabolites, and elements could be specifically linked to either a stress response (decreased serum amyloid A and Cu, increased apolipoprotein CIII, amino acids, LDL, P, and Mo) or a primary viral respiratory infection (increased apolipoprotein A1, haptoglobin, glucose, amino acids, LDL and Cu, decreased Lipid, and P). Thus, combined OMICS analysis of serum samples revealed that multimethod analysis could be used to discriminate between the complex biological responses to stress and viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.