This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Background: Female survivors of childhood cancer treated with abdominal radiotherapy who manage to conceive are at risk of delivering premature and low-birthweight offspring, but little is known about whether abdominal radiotherapy may also be associated with additional complications during pregnancy and labor. We investigated the risk of developing pregnancy and labor complications among female survivors of childhood cancer in the British Childhood Cancer Survivor Study (BCCSS). Methods: Pregnancy and labor complications were identified by linking the BCCSS cohort (n = 17 980) to the Hospital Episode Statistics (HES) for England. Relative risks (RRs) of pregnancy and labor complications were calculated by site of radiotherapy treatment (none/abdominal/cranial/other) and other cancer-related factors using log-binomial regression. All statistical tests were two-sided. Results: A total of 2783 singleton pregnancies among 1712 female survivors of childhood cancer were identified in HES. Wilms tumor survivors treated with abdominal radiotherapy were at threefold risk of hypertension complicating pregnancy (relative risk = 3.29, 95% confidence interval [CI] = 2.29 to 4.71), while all survivors treated with abdominal radiotherapy were at risk of gestational diabetes mellitus (RR = 3.35, 95% CI = 1.41 to 7.93) and anemia complicating pregnancy (RR = 2.10, 95% CI = 1.27 to 3.46) compared with survivors treated without radiotherapy. Survivors treated without radiotherapy had similar risks of pregnancy and labor complications as the general population, except survivors were more likely to opt for an elective cesarean section (RR = 1.39, 95% CI = 1.16 to 1.70). Conclusions: Treatment with abdominal radiotherapy increases the risk of developing hypertension complicating pregnancy in Wilms tumor survivors, and diabetes mellitus and anemia complicating pregnancy in all survivors. These patients may require extra vigilance during pregnancy.
Summary Background Few studies have investigated the risks of subsequent primary neoplasms after adolescent and young adult (AYA) cancer. We investigated the risks of specific subsequent primary neoplasms after each of 16 types of AYA cancer. Methods The Teenage and Young Adult Cancer Survivor Study is a population-based cohort of 200 945 survivors of cancer diagnosed when aged 15–39 years in England and Wales from Jan 1, 1971, to Dec 31, 2006. The cohort was established using cancer registrations from the Office for National Statistics and the Welsh Cancer registry. Follow-up was from 5-year survival until the first occurrence of death, emigration, or study end date (Dec 31, 2012). In this analysis, we focus on the risk of specific subsequent primary neoplasms after 16 types of AYA cancer: breast; cervical; testicular; Hodgkin lymphoma (female); Hodgkin lymphoma (male); melanoma; CNS (intracranial); colorectal; non-Hodgkin lymphoma; thyroid; soft-tissue sarcoma; ovarian; bladder; other female genital; leukaemia; and head and neck cancer. We report absolute excess risks (AERs; per 10 000 person-years) and cumulative incidence of specific types of subsequent primary neoplasm after each type of AYA cancer. Findings During the 2 631 326 person-years of follow-up (median follow-up 16·8 years, IQR 10·5–25·2), 12 321 subsequent primary neoplasms were diagnosed in 11 565 survivors, most frequently among survivors of breast cancer, cervical cancer, testicular cancer, and Hodgkin lymphoma. AERs of any subsequent primary neoplasms were 19·5 per 10 000 person-years (95% CI 17·4–21·5) in survivors of breast cancer, 10·2 (8·0–12·4) in survivors of cervical cancer, 18·9 (16·6–21·1) in survivors of testicular cancer, 55·7 (50·4–61·1) in female survivors of Hodgkin lymphoma, and 29·9 (26·3–33·6) in male survivors of Hodgkin lymphoma. The cumulative incidence of all subsequent primary neoplasms 35 years after diagnosis was 11·9% (95% CI 11·3–12·6) in survivors of breast cancer, 15·8% (14·8–16·7) in survivors of cervical cancer, 20·2% (18·9–21·5) in survivors of testicular cancer, 26·6% (24·7–28·6) in female survivors of Hodgkin lymphoma, and 16·5% (15·2–18·0) in male survivors of Hodgkin lymphoma. In patients who had survived at least 30 years from diagnosis of cervical cancer, testicular cancer, Hodgkin lymphoma in women, breast cancer, and Hodgkin lymphoma in men, we identified a small number of specific subsequent primary neoplasms that account for 82%, 61%, 58%, 45%, and 41% of the total excess number of neoplasms, respectively. Lung cancer accounted for a notable proportion of the excess number of neoplasms across all AYA groups investigated. Interpretation Our finding that a small number of specific subsequent primary neoplasms account for a large percentage of the total excess number of neoplasms in long-term survivors of cervical, breast, and testicular cancer, and Hodgkin lymphoma provides an evidence base ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.