Despite advances in therapy, glioblastoma remains an incurable disease with a dismal prognosis. Recent studies have implicated cancer stem cells within glioblastoma (glioma stem cells, GSCs) as mediators of therapeutic resistance and tumor progression. In this study, we investigated the role of the transforming growth factor-β (TGF-β) superfamily, which has been found to play an integral role in the maintenance of stem cell homeostasis within multiple stem cell systems, as a mediator of stem-like cells in glioblastoma. We find that BMP and TGF-β signaling define divergent molecular and functional identities in glioblastoma, and mark relatively quiescent and proliferative GSCs, respectively. Treatment of GSCs with BMP inhibits cell proliferation, but does not abrogate their stem-ness, as measured by self-renewal and tumorigencity. Further, BMP pathway activation confers relative resistance to radiation and temozolomide chemotherapy. Our findings define a quiescent cancer stem cell population in glioblastoma that may be a cellular reservoir for tumor recurrence following cytotoxic therapy.
Glioblastoma is the most common primary brain tumor in adults. While the introduction of temozolomide chemotherapy has increased long-term survivorship, treatment failure and rapid tumor recurrence remains universal. The transcriptional regulatory protein, inhibitor of DNA-binding-1 (ID1), is a key regulator of cell phenotype in cancer. We show that CRISPR-mediated knockout of ID1 in glioblastoma cells, breast adenocarcinoma cells, and melanoma cells dramatically reduced tumor progression in all three cancer systems through transcriptional downregulation of EGF, which resulted in decreased EGFR phosphorylation. Moreover, ID1positive cells were enriched by chemotherapy and drove tumor recurrence in glioblastoma. Addition of the neuroleptic drug pimozide to inhibit ID1 expression enhanced the cytotoxic effects of temozolomide therapy on glioma cells and significantly prolonged time to tumor recurrence. Conclusively, these data suggest ID1 could be a promising therapeutic target in patients with glioblastoma. Significance: These findings show that the transcriptional regulator ID1 is critical for glioblastoma initiation and chemoresistance and that inhibition of ID1 enhances the effect of temozolomide, delays tumor recurrence, and prolongs survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.