There is currently a lack of evidence-based guidelines to guide the pharmacological treatment of neurobehavioral problems that commonly occur after traumatic brain injury (TBI). It was our objective to review the current literature on the pharmacological treatment of neurobehavioral problems after traumatic brain injury in three key areas: aggression, cognitive disorders, and affective disorders/anxiety/ psychosis. Three panels of leading researchers in the field of brain injury were formed to review the current literature on pharmacological treatment for TBI sequelae in the topic areas of affective/anxiety/ psychotic disorders, cognitive disorders, and aggression. A comprehensive Medline literature search was performed by each group to establish the groups of pertinent articles. Additional articles were obtained from bibliography searches of the primary articles. Group members then independently reviewed the articles and established a consensus rating. Despite reviewing a significant number of studies on drug treatment of neurobehavioral sequelae after TBI, the quality of evidence did not support any treatment standards and few guidelines due to a number of recurrent methodological problems. Guidelines were established for the use of methylphenidate in the treatment of deficits in attention and speed of information processing, as well as for the use of beta-blockers for the treatment of aggression following TBI. Options were recommended in the treatment of depression, bipolar disorder/mania, psychosis, aggression, general cognitive functions, and deficits in attention, speed of processing, and memory after TBI. The evidence-based guidelines and options established by this working group may help to guide the pharmacological treatment of the person experiencing neurobehavioral sequelae following TBI. There is a clear need for well-designed randomized controlled trials in the treatment of these common problems after TBI in order to establish definitive treatment standards for this patient population.
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild (and some moderate) TBI can be difficult to diagnose due to lack of obvious external injuries and because the injuries are often not visible on conventional acute MRI or CT. Injured brain tissues in TBI patients generate pathological low-frequency neuronal magnetic signal (delta waves 1-4 Hz) that can be measured and localized by magnetoencephalography (MEG). We hypothesize that abnormal MEG delta waves originate from gray matter neurons that experience de-afferentation due to axonal injury to the underlying white matter fiber tracts, which is manifested on diffusion tensor imaging (DTI) as reduced fractional anisotropy. The present study used a neuroimaging approach integrating findings of magnetoencephalography (MEG) and diffusion tensor imaging (DTI), evaluating their utility in diagnosing mild TBI in 10 subjects in whom conventional CT and MRI showed no visible lesions in 9. The results show: (1) the integrated approach with MEG and DTI is more sensitive than conventional CT and MRI in detecting subtle neuronal injury in mild TBI; (2) MEG slow waves in mild TBI patients originate from cortical gray matter areas that experience de-afferentation due to axonal injuries in the white matter fibers with reduced fractional anisotropy; (3) findings from the integrated imaging approach are consistent with post-concussive symptoms; (4) in some cases, abnormal MEG delta waves were observed in subjects without obvious DTI abnormality, indicating that MEG may be more sensitive than DTI in diagnosing mild TBI.
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.